
Fabiana Pedreira Simões

Supporting End User Reporting of HCI Issues
in Open Source Software Projects

DISSERTAÇÃO DE MESTRADO

Dissertation presented to the Programa de Pós-
Graduação em Informática of the Departamento de
Informática, PUC-Rio as partial fulfillment of the
requirements for the degree of Mestre em
Informática.

Advisor: Profa. Simone Diniz Junqueira Barbosa

Rio de Janeiro
August 2013

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

Fabiana Pedreira Simões

Supporting End User Reporting of HCI Issues
in Open Source Software Projects

Dissertation presented to the Programa de Pós-Graduação
em Informática of the Departamento de Informática, PUC-Rio
as partial fulfillment of the requirements for the degree of
Mestre em Informática.

Profa. Simone Diniz Junqueira Barbosa
Advisor

Departamento de Informática – PUC-Rio

Profa. Clarisse Sieckenius de Souza
Departamento de Informática – PUC-Rio

Prof. Julio Cesar Sampaio do Prado Leite
Departamento de Informática – PUC-Rio

Prof. José Eugênio Leal
Coordinator of the Centro Técnico Científico da PUC-Rio

Rio de Janeiro, August 21st, 2013

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

All rights reserved.

Fabiana Pedreira Simões

Graduated in Information Systems from PUC-Rio in 2011. She is
an active contributor in the GNOME Project, an open source
desktop environment. Her main interest areas are Human-
Computer Interaction and Open Source Communities.

Bibliographic data

CDD: 004

Simões, Fabiana Pedreira

 Supporting end user reporting of HCI issues in open source
software projects / Fabiana Pedreira Simões ; advisor: Simone
Diniz Junqueira Barbosa. – 2013.
 147f : Il. (color.) ; 30 cm

 Dissertação (mestrado)–Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática, 2013.
 Inclui bibliografia

 1. Informática – Teses. 2. Relatos de problemas de IHC. 3.
Comunidades open source. 4. Avaliação de IHC. I. Barbosa,
Simone Diniz Junqueira. II. Pontifícia Universidade Católica do
Rio de Janeiro. Departamento de Informática. III. Título.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

To my mother.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

Acknowledgments

To my mother, whose support and love brought me here.

To Simone Barbosa, the best adviser one could have, who is both an inspiration
and an example to me. Thank you for the support, patience and brownies.

To Lorena Miguel, who has been coping with me for six years. Thank you for
always trusting me, regardless of how much I distrusted myself.

To Andreas Nilsson, whose love and uplifting attitude comfort and lighten me.
Thank you for always believing in this work. Jag älskar dig.

To Vinicius Segura, José Antônio Motta, and Taíssa Abdalla, who helped me
laugh at tragedy. Thank you for the support and for making this all easier.

To the GNOME community, for embracing me and giving me an opportunity
to contribute to a better world.

To CNPq, who supported and financed this work.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

Abstract

Simões, Fabiana Pedreira Simões; Barbosa, Simone Diniz Junqueira (Advisor).
Supporting End User Reporting of HCI Issues in Open Source Software
Projects. Rio de Janeiro, 2013. 147p. MSc. Dissertation – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Empowering end users to proactively contribute to OSS by reporting

HCI issues not only represents a potential approach to solving HCI problems in

OSS projects, but it also fits the Open Source values and ideology. By referring

to the end users’ personal experiences and feedback reports, designers in OSS

communities may build their design rationale not only in an open and

transparent manner, but also in such a way that end users relate to the values

embedded in the community. This study aims to contribute to the existing

literature by exploring (a) how issue reports fit and influence OSS designers'

activities, (b) what the information needs of designers in OSS projects are, and

(c) how to support users on the task of creating HCI issues reports that meet

those needs. In order to collect data about questions (a) and (b), we conducted

interviews with four designers contributing to OSS projects, and qualitatively

evaluated a set of 547 bugs reported under HCI-related keywords. Using this

data and based on Semiotic Engineering, we designed a form for users to report

HCI issues. To investigate how well this form communicates the information

needs of OSS designers and address question (c), we performed a study in which

participants were invited to report HCI issues through the designed form.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

Keywords

End user reporting of HCI issues; open source communities; HCI
evaluation

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

Resumo

Simões, Fabiana Pedreira Simões; Barbosa, Simone Diniz Junqueira. Apoiando o
Relato de Problemas de IHC em Projetos de Software Open Source. Rio de
Janeiro, 2013. 147p. Dissertação de Mestrado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

Capacitar usuários a contribuir proativamente para projetos de Open

Source Software (OSS) através de relatos de problemas de Interação Humano-

Computador (IHC) não apenas representa uma alternativa para resolver

problemas de IHC em projetos de OSS, mas uma que se enquadra nos valores e

ideologia da comunidade OSS. Através de referências às experiências

comunicadas através de relatos de problemas de IHC, designers em projetos de

OSS podem não apenas fazer suas decisões de design de uma maneira aberta

transparente, mas também de uma maneira que os usuários finais possam se

relacionar com os valores da comunidade. Esse estudo tem como objetivo

explorar (a) como relatos de problemas se encaixam e influenciam as atividades

de designers em projetos de OSS, (b) quais são as informações necessárias dos

designers em projetos de OSS, e (c) como podemos apoiar os usuários na criação

de relatos que estejam alinhados com essas informações. Para endereçar as

questões (a) e (b), nós realizamos entrevistas com quatro designers contribuindo

para projetos de OSS, e avaliamos qualitativamente um conjunto de 547 bugs

reportados com palavras-chave relacionadas à IHC. Com esses dados, nós

elaboramos um formulário, com base na Engenharia Semiótica, para usuários

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

relatarem problemas de IHC. Para avaliar quão bem esse formulário comunica

as informações que designers em projetos de OSS precisam e, então, endereçar a

questão (c), nós conduzimos um estudo onde participantes foram convidados a

reportar problemas de IHC através do formulário elaborado.

Palavras-chave
Relatos de problemas de IHC; comunidades open source; avaliação de

IHC

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

Contents

1 Introduction 14

2 Research Goals 19

3 Related Work 23

4 Concepts and Techniques 39

5 Methodology 47

6 Feedback Management and Information Needs 55

7 Improving Reports 94

8 Conclusion 122

9 References 128

Appendix A Interview Script 138

Appendix B Tagging Reports 140

Appendix C HCI Issue Report Form 144

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

List of Figures

Figure 1: The Bug Submission Assistant wizard-like interface 31

Figure 2: Overall workload for each of the participants in the study. 118

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

List of Tables

Table 1: Barriers to HCI activities in OSS development adapted from Nichols and

Twidale (2003). 22

Table 2: Usability problem report form proposed by Lavery and colleagues

(1997). 37

Table 3: 10 Heuristics for UI Design proposed by Nielsen (1994b) 41

4 45

Table 5: Description of the user utterances used in CEM (de Souza and Leitão,

2009). 45

Table 6: Description of products selected for bug analysis. 52

Table 7: Our bug sampling per product and per keyword investigated. 54

Table 8: Coding template created after the interviews from the first study (section

5.1) 57

Table 9: Distribution of bugs tagged with Nielsen's heuristics. 70

Table 10: Distribution of bugs tagged with the utterances of CEM. 71

Table 11: Mapping between types of information (section 6.2), and initial form

questions. 97

Table 12: Help-specific utterances proposed by Silveira and colleagues (2004). 99

Table 13: Final set of utterances considered for the design of our HCI issue report

format. 99

Table 14: User utterances per affordance level, according to Silveira and

colleagues (2004). 101

Table 15: Profile of the participants in the study ordered by number of reports .

107

Table 16: Workload dimensions in the NASA-TLX procedure (Hart and Staveland,

1988) 109

Table 17: Amount of reports that do not address the information types needed,

per information type. 110

Table 18: Distribution of bug reports per descriptor expected and used. 115

Table 19: Occurrences of each user utterance per affordance level. 116

Table 20: Average rating per dimension, ordered by average rating. 120

2122 121

2122 121

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

Table 23: Average weight per dimension, ordered by average weight. 121

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

It's free as in freedom.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

15

1 Introduction

The Open Source Initiative1 (2012) defines open source as a “development

method for software that harnesses the power of distributed peer review and

transparency of process”. Stallman (1992) endorses this view by referring to

open source as a “cooperative endeavor that produces a shared resource for all.”

Also, according to Ghosh (2006), open source software (OSS) is software

developed through a collaborative, informal network of professional or amateur

developers who subscribe to the open source ideology. Because of its distributed

nature, OSS development happens mostly over the internet, making OSS

projects of easy access to anyone interested in joining or using them.

One of the characteristics of OSS development is that anyone, user or

contributor, can report problems found while using a piece of OSS. Raymond

(1998) compared the development styles of open and closed source software

projects. Based on this, he described some key defining aspects of OSS

development, the most famous of which being “given enough eyeballs, all bugs

are shallow”. Also known as Linus' law, this quote refers to how, by having a

1 http://opensource.org/

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

16

large number of community members using and testing software, problems are

found, reported and fixed. This means that software problems get characterized

very rapidly within OSS development.

From the perspective of Human-Computer Interaction (HCI) research,

this dialog, in the form of reports from user communities to developers,2

presents a promising opportunity for the identification of interface and

interaction issues in software. In the context of OSS, this is an important goal to

achieve, given the fact that OSS is widely considered to have low usability and

poor user experience (Nichols and Twidale, 2003). In fact, we find increasing the

involvement of users through reports of HCI issues among the potential

approaches proposed by Nichols and Twidale (2006) to overcoming HCI

problems in OSS. This dialog between users and designers3 through reports of

HCI issues is also known as “user-reported incident” (Castillo et al., 1998;

Hartson and Castillo, 1998), one of the most widely known approaches to post-

deployment research, a subset of the remote research methods in HCI

(Hammontree, 1994).

There are three trends in OSS development that make use of post-

deployment research suitable to OSS projects (Nichols et al., 2003): low-cost

reliable networking connecting users and developers, incremental software

versions, and easy upgrades for users. In addition, Hartson and colleagues (1996)

2 In this context, “developers” include all contributors in an OSS project, regardless of their
involvement with code.

3 In this work, we use the term “designers” to refer to HCI designers only.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

17

claim that processing the results of other remote methods, such as user journals

or automatically generated logs of user actions, can be like “looking for a needle

in a haystack”. This can be a problem in OSS development, since a large portion

of its developers contribute on their spare time. However, as Hartson also

observes that “if users can deliver the needles directly, we can avoid the

haystack”, in reference to the user-reported incident method.

A number of works on OSS development has focused on incident

reporting from the perspective of correctness of behavior and functionality.

However, little research has focused specifically on the matters of user

involvement with these reports. The studies most closely related to this topic

observe interactions between power users and developers through bug reporting

systems (Bettenburg et al., 2008; Ko and Chilana, 2010). Other researches focus

mostly on using bug reporting systems as a data point to study coordination

aspects of open source communities (Sandusky and Gasser, 2005; Li et al., 2008)

and the transitions users make until they become active developers (Von Krogh

et al., 2003; Ducheneaut, 2005; Herraiz et al., 2006; Jensen and Scacchi, 2007).

The topic of user reporting of HCI issues has also received relatively little

attention in the research community. Previous work (Frishberg et al., 2002;

Nichols et al., 2003; Nichols and Twidale, 2003; Raymond, 1999) has suggested

that HCI issues are not easily dealt with in OSS projects. Indeed, Wilson and

Coyne (2001) debate whether HCI issues actually belong to the same system as

issues related to code. In response to that, a few works raise discussion on how

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

18

HCI-related bugs are managed in OSS projects (Sandusky et al., 2004b; Scacchi,

2002) and on how HCI discussions take place within OSS bug reporting

systems (Twidale and Nichols, 2005). Apart from the literature on remote

methods, the work most closely related to the specific topic of user reporting of

HCI issues mostly states the potential of the technique for OSS projects

(Nichols et al., 2003; Nichols, 2003).

Empowering and motivating users to proactively contribute through the

reporting of HCI issues not only represents a potential approach to the problem

of HCI activities in OSS projects. It also fits the open source values and

ideology, since it poses a way by which designers may inform the rationale of

their design decisions in an open and transparent manner. From our

involvement in the GNOME4 project, this is a critical point for OSS

communities to trust and, therefore, value designer participation.

OSS communities have shown the potential of its distributed model to

achieve rapid results in terms of functionality. As Nichols (2003) also asks, can

we take advantage of this model to leverage HCI activities and create easier

feedback channels for the less technical user? This study aims to contribute to

the existing literature by exploring: (RQ1) how reports of HCI issues fit OSS

designers' activities, (RQ2) what the information needs of designers in OSS

projects are, and (RQ3) how to support users on the task of creating reports of

HCI issues that meet those needs.

4 http://www.gnome.org

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

19

In order to address questions (RQ1) and (RQ2), we conducted interviews

with four designers contributing to OSS projects, and qualitatively evaluated a

set of 547 bugs reported under HCI-related keywords. To address question

(RQ3), we designed a form for user reporting of HCI issues, based on the data

collected in the aforementioned study, and on Semiotic Engineering. To

investigate how well this form communicates the information needs of OSS

designers, we performed a study in which participants were invited to report

HCI issues through the designed form.

1.1 Document Structure

This dissertation is organized as follows: In chapter 2, we present the research

questions we are targeting with this study. In chapter 3, we compare our work

to previous research in five areas: OSS projects and HCI activities, end user

reporting, bug reporting, formats for reporting HCI issues, and information

needs in software development. In chapter 4, we present concepts and

techniques explored in this work. In chapter 5, we present and provide a

rationale for the research methods employed for this work. In chapter 6, we

report our findings on how reports of HCI issues fit into OSS designers'

activities and what the information needs of OSS designers are. In chapter 7, we

describe the design and evaluation of a form for reporting HCI issues. Finally,

in chapter 8, we wrap up this work with our conclusions and discuss

opportunities for future work.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

20

2 Research Goals

This chapter aims to summarize the background of the work presented in this

dissertation, and to then formally state our research questions.

2.1 Background

Several authors (Cox, 1998; Crowston et al., 2004; Gacek and Arief, 2004;

Gallivan, 2008) have described OSS communities as having a hierarchical or

onion-like structure, with increasingly larger groups of less technically savvy

contributors. At the core, there is a small team of developers who contributes

regularly and oversees the design and evolution of the project. Surrounding the

core, there are the co-developers, people who contribute less often and by

reviewing code or submitting bug fixes. Beyond this, come the active users, a

technically savvy subset of the user base who contributes with bug reports and

feature requests, but who does not actually code. Even farther from the core,

there are the passive users, a group whose size is difficult to tell given the nature

of OSS distribution channels (Crowston et al., 2004). Passive users may include

both technically savvy and non-savvy users.

When the open source movement started, developers involved in OSS

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

21

projects basically used to build tools for themselves to use. These tools were

shared with other developers, who, by taking interest in a certain piece of

software, could then come and help build it. With the proliferation of OSS,

however, OSS communities now perceive a change on their user bases, which in

the past was mostly composed by developers building for themselves. Anyone

with an Internet connection can now download an OSS, whether or not this

software was developed with that user demographic in mind. Bach and Carroll

(2009) say “... a great number of [open source] software applications is available

on the Internet for download, but the kind of experience that comes with that

software is unpredictable”.

In order for OSS projects to achieve wider adoption, especially in less

technical user bases, we need to overcome the HCI problems that arise from

having mostly technical people creating technical artifacts. As mentioned

before, Nichols and Twidale (2003) outlined nine barriers in OSS projects that

negatively impact HCI practices, among which reside issues related to the

developers' perception of users and of their issues while using software (Table

1). Unsurprisingly, when proposing potential approaches to overcoming these

barriers and improving HCI insertion in OSS projects, Nichols and colleagues

(2006) point to end user involvement as a promising way to bridge the gap

between developers and users.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

22

Table 1: Barriers to HCI activities in OSS development adapted from Nichols and Twidale
(2003).

Developer
perception

Developers perceive users as equally technical or annoyingly
stupid.
Developers perceive usability problems as trivial.
Developers perceive usability problems as functionality problems.
Developers value power over simplicity: complex software is more
powerful, but can be difficult to use.

Community
integration

Difficult for usability professionals to integrate into open source
culture.
No resources for high quality usability work.

Process
constraints

Difficult to innovate because of mental models already established
from closed source software.
Function-centric software that anybody can work on can result in
'feature bloat'.

As Pemberton (2004) observes, if OSS is to appeal to people other than

the ones producing it, OSS communities need to (a) start learning what other

people's itches are – in reference to Raymond's (1998) archetype of developers

“scratching their personal itches” in OSS projects – or (b) empower people with

ways to “tickle the programmers, so that they will scratch it.”

2.2 Research Questions

This dissertation explores how user reporting of HCI issues can be used as

a way to achieve the second approach proposed by Pemberton. Our goal is to

support the involvement of the passive user layer of the onion-like structure of

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

23

OSS projects in order to provide OSS designers with data of people's actual use

of OSS. We expect that this kind of data will not only support OSS designers in

the task of redesigning OSS release after release, but also in the task of

informing the rationale of design decisions to their respective OSS communities

– a point we observed as very problematic, from our involvement in the

GNOME project. We aim to employ user reporting as an alternative to

traditional HCI evaluation methods, since those have proved themselves

unsuitable to the OSS ecosystem (Andreasen et al., 2007; Bach and Carroll,

2009).

In this work, we try to understand the information needs of designers in

OSS projects and how reports of HCI issues fit into their activities. Based on

this understanding, we then explore ways in which we can provide support for

users to produce reports of HCI issues that align with these needs. Given this

scenario, the following research questions apply:

RQ1 How do reports of HCI issues fit OSS designers' activities?

RQ2 What are the kinds of information OSS designers need in reports of

HCI issues?

RQ3 How can we support end users in creating reports of HCI issues that

meet OSS designers' information needs?

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

24

3 Related Work

The phenomenon of OSS development and communities attracted many

research disciplines throughout the years, including business, information

systems, computer-supported cooperative work, and software engineering, to

name a few. We focus this overview of the literature on research that examines

issue reporting practices and systems, from the perspective of Open Source

Communities, Human-Computer Interaction and Software Development.

3.1 OSS Projects and HCI activities

Typically, OSS projects are organized around technically talented developers,

whose communication revolves around technical aspects and source code.

Although OSS communities generally acknowledge that a greater emphasis on

HCI is essential for OSS wider adoption (Andreasen et al., 2006; Duffy, 2010), a

culture of design and attention to HCI practices has not been very strong in

OSS projects (Schwartz and Gunn, 2009). Even though OSS projects have

managed to attract a large number of developers and users, Bach and colleagues

(2009) observe that HCI designers still rarely engage in them, and that HCI

activities are often neglected. They address motivation as a main challenge for

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

25

getting designers to participate in OSS projects, and propose fostering ways to

provide opportunities for merit from HCI activities as a way to encourage

designer participation in OSS communities.

Nichols and colleagues (2001) suggest that HCI activities in OSS projects

may be restricted by the software development process itself. They described

the results of a usability test of the open source Greenstone Digital Library

software, and tried to understand the likely causes for the problems identified

from within the Greenstone development environment. Among other

problems, the lack of average (less technically savvy) user involvement was

pointed out as one of the main sources of HCI issues. Indeed, this also figures in

Nichols and Twidale's (2003) list of nine barriers in OSS projects that negatively

impact aspects of HCI (Table 1), as a matter of developer perception.

Other researches described additional barriers for adopting HCI practices

in OSS development. Hedberg and colleagues (2007) reviewed the literature on

HCI from the perspective of OSS development. They captured a number of

issues related to the nature of the process itself: developers use software

differently than non-technical users; lack of a user-centered approach to software

development; lack of designer participation; unsuitability of traditional HCI

methods within the spirit of open source, among others. Viorres and colleagues

(2007) reinforce these results by highlighting the problems of HCI methods

integration into OSS development, and by explaining that HCI activities add

another layer of complexity to the OSS development process. Validating the

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

26

results of these analytical studies, empirical studies confirm the challenge of

integrating HCI methods into OSS projects (Twidale and Nichols, 2005;

Andreasen et al., 2006).

These barriers for HCI methods adoption, of course, are also perceived in

terms of evaluation of OSS user interfaces. According to Andreasen and

colleagues (2006), common sense is the primary evaluation method used in OSS

development. Their study consisted of a questionnaire survey and a series of

interviews with OSS contributors with both technical and human factors

background. They found out that common usability conventions and guidelines

frequently replace the use of traditional HCI evaluation methods. They also

observe that, nevertheless, OSS designers firmly state that these tools are not

sufficient for evaluation purposes, and that more formal user studies should also

take place within OSS development.

3.2 User reporting

User reporting of issues is one of the most common approaches to post-

deployment research, a subset of the remote HCI research methods. Hartson

and colleagues (1996) define remote research methods as methods “wherein the

evaluator, performing observation and analysis, is separated in space and/or

time from the user.” They present remote methods as an alternative to the

traditional HCI research methods, where users are directly observed by

evaluators, usually in a laboratory environment. In this work, they describe a

list of possible approaches to remote methods for the purposes of formative

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

27

evaluation, that being “evaluation used for improving user interaction with

systems.” Among the possible approaches figure remote questionnaires and

surveys, videoconferencing as an extension of the laboratory, and

instrumentation of an application and its interface for logging of usage data.

A subset of the research on remote methods focuses on the matter of post-

deployment scenarios. While upfront user research and prototyping are crucial

to the design of user-centered applications, learning about the actual ways in

which users use an application after its deployment is also valuable (Norman

and Draper, 1986; Nielsen, 1992). Hartson and Castillo (1998) state that “the

need for usability improvement does not end with deployment, and neither

does the value of lab-based evaluation, although it does remain limited to tasks

that developers believe to represent real usage.” So far, however, the literature

presented little work on HCI research methods for the post-deployment phase.

From the observation of the lack of research on the area, Chilana and

colleagues (2011) surveyed 333 full-time usability professionals in large and small

corporations from a variety of industries to better understand and characterize

the state of post-deployment HCI activities. One of their findings suggests that,

as observed by Nielsen (1992), the role of HCI experts tend to diminish after

deployment and that they are rarely involved in post-deployment activities.

They also note that, when HCI experts have the opportunity to be involved in

post-deployment activities, their contribution is often “found of significant

value.”

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

28

Nichols and colleagues (2003) point out two main approaches to post-

deployment HCI research. In the first one, users' actions can be automatically

recorded and sent to developers, through an instrumentation of the application

and its interface. Hartson and colleagues (1996) state that this approach, to

which they refer as instrumented remote evaluation, has the advantage of not

interfering with the users' activities. They also observe, however, that it might

be hard to infer interaction problems effectively from data gathered using this

method.

The second approach pointed out by Nichols and colleagues is to allow

users to proactively send reports on HCI issues (Castillo et al., 1998; Hartson

and Castillo, 1998). Hartson and colleagues (1996) stress the potential of this

method, to which they refer as semi-instrumented remote evaluation, but also

alert on the issues of relying on users with close to no training to identify

interaction issues. Fortunately, Hartson and Castillo (1998) show that users,

with brief training, are able to identify, report and rate the severity level of

critical HCI issues. This claim comes from a study that compared evaluation of

data obtained through laboratory observation and through user generated

reports. With this study, Hartson and Castillo also observe that the technique

simplifies data collection and reduce potential biases of an evaluator on the users

and on the observations.

Nichols and colleagues (2003) present the only work we found that makes

explicit the suitability of user reporting of HCI issues to OSS projects. In this

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

29

work, they also present a prototype for the open source Greenstone Digital

Library software. They mostly use this prototype as a test case for the challenge

of designing user reporting tools that fit their highlighted requirements, and

present no evaluation of it. While evaluating remote HCI methods, Andreasen

and colleagues (2007) also drew a line connecting remote methods in general and

OSS projects: “OSS development is characterized by distributed collaboration

between contributors to a specific project. A project can have hundreds of

contributors spread worldwide. This makes it hard to employ conventional

usability testing methods”.

Bach and Twidale (2010) also shortly explore the matter of how users with

less technical skills can report on HCI issues, but focus mostly on the use of

Schön's model of the reflective practitioner (1983) to engage these users in HCI

discussions from a participatory design perspective. They analyzed the contents

of HCI discussions within the OpenOffice project focusing on in-depth analysis

of the participation of 5 users, and illustrated each of the three characteristics of

Schön's reflective practitioner (problem framing, hypothesizing, and

understanding) within it.

This work aims to explore the use of user reporting of incidents in the

context of OSS, having in mind the advantages of post-deployment methods

and its suitability to OSS development, exposed by the aforementioned works.

3.3 Bug Reporting

While there has been a number of studies on the dynamics of OSS projects,

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

30

little work has focused on the issue of bug reporting. Several studies make use of

bug databases as a data point for observing other aspects of OSS development,

such as coordination of work and community organization. There are some

works on how to automatically assign developers to bug reports (Anvik et al.,

2006; Canfora and Cerulo, 2006), to track software features over time (Fischer

et al., 2003), to recognize bug duplicates (Čubranić, 2004; Runeson et al., 2007)

and to predict development effort for a certain bug report (Weiss et al., 2007).

Prior work has shown that users of OSS do contribute with reports

(Bettenburg et al., 2008; Mockus et al., 2002), confirming the existence of the

active users group in the onion-like structure of OSS communities. From this

starting point, Ko and Chilana (2010) investigated to what extent power users

provide valuable contributions through bug reports. Their study consisted of an

automated analysis of a data set of 496,766 bug reports collected from the

Mozilla bug database. Results suggest that the value of bug reporting is in

“finding talented reporters, instead of in deriving value from the masses”.

 According to Bettenburg and colleagues (2008), most work on what

makes a good bug report constitutes of “anecdotal evidence”, mentioning, for

instance, the numerous articles and guidelines on effective bug reporting that

can be found in the Internet. They conducted a survey among developers and

bug reporters in the Apache, Eclipse and Mozilla communities in order to

characterize what makes a good bug report. Their results show that there is a

mismatch between what information developers consider to be important

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

31

and/or useful and what bug reporters usually provide in their reports. They

suggest that the lack of support in bug reporting tools is largely responsible for

this mismatch and, as an alternative, developed Cuezilla, a tool that measures

the quality of a bug report and recommends additions to increase its quality.

Breu and colleagues (2010) quantitatively and qualitatively analyzed the

questions asked in a sample of 600 bug reports collected from the Mozilla and

Eclipse bug databases. They categorized the questions found in these reports

(and in their follow-up comments) and analyzed developer response rates and

times by both category and project. They note that reporters' ongoing

participation is important for making progress on the resolution of the bugs

they reported, since many follow-up questions are posed in order to achieve

better understanding of the problem. Once again, the need for better bug

reporting tools is brought to attention, given the necessity of better ways to

elicit the necessary information from users.

The LibreOffice5 community, for example, has recognized the difficulties

non technically savvy users may face when using existing bug reporting

systems. They elaborated a tool called Bug Submission Assistant6 (BSA) with

the purpose of replacing the regular Bugzilla reporting interface, which they

claimed7 to be more suited to “expert” users. The BSA reporting form consists

of the required fields in the regular Bugzilla reporting form. These fields are

5 http://www.libreoffice.org
6 https://www.libreoffice.org/get-help/bug/
7 https://wiki.documentfoundation.org/Bug_Submission_Assistant

https://wiki.documentfoundation.org/Bug_Submission_Assistant
https://www.libreoffice.org/get-help/bug/
http://www.libreoffice.org/
DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

32

presented in a wizard-like manner (Figure 1), with the purpose of emphasizing

to the user that every step in the process is “necessary to properly fill a bug

report”. As a replacement of Bugzilla, BSA mostly provides support for

reporting software crash or missing features and has no particular emphasis on

the reporting of HCI issues.

Apart from the works of Bettenburg (2010) and colleagues and Breu and

colleagues (2010), other researches also suggest the improvement of bug

reporting tools as a way to increase developers' productivity (Just et al., 2008;

Breu et al., 2010). Chilana and colleagues (2010), handle this matter from the

Figure 1: The Bug Submission Assistant wizard-like interface

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

33

perspective of leveraging user participation in bug reporting. Their study on

users' expressions of unwanted behaviors in bug reporting indicate the need for

“more concrete ways (for users) to express a range of unwanted behaviors” in

bug reporting tools.

There is little detail on the literature on the specific topic of bug reporting

of HCI issues. Some of the works concerned with how bugs are processed

within OSS projects (Scacchi, 2002; Crowston and Scozzi, 2004, Sandusky et al.,

2004a; Sandusky et al., 2004b) touch on the matter of user interface (UI) bugs,

but with no deep involvement in the topic. Twidale and Nichols (2005) examine

bug reports collected from the Mozilla and GNOME Bugzilla bug databases, in

order to characterize how designers address and resolve HCI issues. Their bug

report data set consisted of bug reports described by keywords such as

'usability', 'human-computer interaction' and 'interface'. Some of their findings

point to interface design problems with bug reporting tools. For example, they

suggest that the text-centric nature of Bugzilla imposes challenges to the

discussion of dynamic aspects of HCI.

Faarbord and Schwartz (2010) explored ways in which OSS communities

can adapt their bug reporting tools in order to better capture usability issues for

the purposes of evaluation. They proposed what they call a Distributed

Heuristic Evaluation, which consists of associating bugs to what usability

heuristic (from a set of pre-defined usability heuristics) they violated. As far as

we know, the technique was not evaluated in any sense. However, Farboorg and

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

34

Schwartz mention that they expect that the use of the distributed Heuristic

Evaluation intra and inter OSS communities would build a shared vocabulary

for describing HCI issues.

There are other works on vocabulary matters when it comes to users

reporting issues they experience while using a certain piece of software.

Chilana and colleagues (2010) conducted a study on how end users express

wanted behaviors in bug reporting. They created a classification of seven

common expectation violations cited by end users in bug report descriptions

and applied it to 1000 bug reports from the Mozilla project. Their findings

show that reporters tend to describe bugs as violations of the community's

expectations, instead of their own. Additionally, they also noted that bugs

described as violations of personal expectation are less likely to get fixed.

Ko and colleagues (2006b) present a linguistic analysis of how people

describe software problems in bug reports. They performed a quantitative study

over nearly 200,000 bug report titles and discuss several design ideas for bug

reporting tools, motivated by their study results. They suggest a redesign of bug

reporting forms in order to structure the information reporters naturally

include. For example, for the case of report titles, their study indicate most bugs

are summarized by (1) a software entity, (2) a quality attribute, (3) a problem,

(4) the execution context, and (5) whether the report is a bug or a missing

feature.

 Outside the context of OSS development, Heller and colleagues (2011)

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

35

describe a prototype for bug reporting focused on simple one-bit-feedback

facilities, such as the Facebook “Like” button. The prototype consists of a

physical hardware button, which users are supposed to press whenever they

observe an incident. Users may provide further details if they want, but this is

not solicited to them given the occurrence of an issue. No studies on the

usefulness of these one-bit reports on the eyes of designers were presented.

In conclusion, bug reporting is currently one of the main ways users

contribute to OSS projects with both code and HCI issue reports. The works

presented in this section, however, highlight the unsuitability of current bug

tracking tools to the report of HCI issues, and the need for better tools to

support users in creating reports that are actually feasible to OSS designers to

work on, a gap we aim to explore with this work.

3.4 Formats for reporting HCI issues

We found four different formats in the literature (Jeffries, 1994; Mack and

Montaniz, 1994; John and Packer, 1995; Lavery et al., 1997) for reporting HCI

issues. These formats are intended to be used by designers reporting findings

obtained through traditional evaluation methods - such as the heuristic

evaluation, the cognitive walkthrough, among others.

Based on the analysis of a collection of usability problem reports, Jeffries

(1994) suggested a format that includes a description of the problem observed

along with its severity, and a solution to it. She states that the description of the

problem should mostly focus on the user and on the task he is attempting to

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

36

conclude, which results in causes and consequences of a given problem being

discussed as a single topic. Lavery and colleagues (1997) argued against this

format based on Hollnagel's (1993) work, which stresses the importance of

distinguishing observed difficulties from inferred causes.

Mack and Montaniz (1994) based their format on reports developed as the

diagnosis of inspection and walkthrough methods. They suggest that usability

problem reports should include the type of the problem being faced, the task

trying to be achieve, and the action associated with the problem's occurrence. A

textual open-ended description should also be included, even though it is the

more discrete information that constitutes the core of the report, since their

main goal was to improve analyst effectiveness.

John and Packer (1995) propose a usability problem format to be used as

output for the Cognitive Walkthrough method. Similarly to Jeffries's (1994)

work, they suggest that a usability problem should be described by a statement

of the problem and of its severity. It also asks designers to identify the

frequency with which they run into the problem, and “an assessment of

whether these judgments came from the technique [Cognitive Walkthrough]

itself (....) or from some form of personal judgment.” This format, as the

aforementioned ones, also fails to highlight distinct aspects of a given usability

problem, such as causes, consequences, and others.

As part of a broader study, Lavery and colleagues (1997) tried to address

the matter by listing four components for any observed usability problem: “a

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

37

cause, a possible breakdown in the user's interaction, and an outcome, all of

which happen in a context.” Based on this understanding of what constitutes a

usability problem, they proposed the usability problem report form presented

in Table 2. Lavery and colleagues' approach is more focused on “validation for

design research purposes”, rather than on effectiveness and productivity, which

was a concern for the aforementioned works.

Table 2: Usability problem report form proposed by Lavery and colleagues (1997).

component question

Context Please describe the context in which the problem arises

Cause What is the cause?
What is the type of the cause (e.g. Knowledge requirement,
design fault)?

Breakdown in
user's interaction

Did a breakdown of the user's interaction occur (Yes or No)
-- if you answered “no” to the above question, go to component
Outcome.
What was the breakdown suffered?

Outcomes arising
from breakdown

What was the user's behavior following the breakdown?
What was the effect on the user's performance and work?
-- go to component Solution.

Outcome Did the cause change the user's behavior? How?
What was the effect on the user's performance and work?

Solution What is your recommended solution to this problem?

The formats described here are intended to be used by designers as a way

to document HCI issues observed through evaluation methods. This

dissertation contributes to the existing literature by providing a format to be

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

38

used by users, as way to report HCI issues they experience when using

software.

3.5 Information needs in software development

Apart from the research of Breu and colleagues (2010) mentioned in section 3.3,

other works examine the information needs of developers in various contexts.

Ko and colleagues (2007) observed 17 developers at a large software company to

understand the types of information developers sought and the sources they

used to find information. From this, they derived a set of 21 types of

information along with their outcomes and sources. They noted that, very

often, developers had to defer tasks because the only source for a certain

information was an unavailable coworker. Herbsleb and Kuwana (1993)

investigated the information needs of software analysts. They analyzed the

content of real software design meetings in three distinct organizations, focusing

on the questions software analysts asked each other. Their findings suggest that

most questions in their sample of software design meetings concerned software

requirements and user scenarios, and that rationale for software design decisions

are seldom asked.

Sillito and colleagues (2006) conducted two studies based on the

observation of developers performing change tasks to medium to large sized

programs, aiming to understand the types of information a developer needs

about a code base in order to be able to perform changes to it. Their main

contribution was a set of 44 categories of questions asked by their participants.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

39

With the purpose of exploring how developers gain understanding about an

unfamiliar code base, a similar study was conducted by Ko and colleagues

(2006a), during which developers were asked to work on debugging and

enhancement tasks for 70 minutes. Their results mostly focus on patterns on

how developers browse code and on the problems they face while doing that.

We are not aware of any works on specific matter of the information

needs of designers in software development. This work aims to contribute to

the literature by addressing this gap, specifically for the case of OSS

development.

3.6 Summary

Considering the works presented in this chapter, we are not aware of studies

that explore how reports of HCI issues fit into OSS designers' activities. This

study aims to contribute to the existing literature by addressing this gap, and

investigating RQ1) how reports of HCI issues fit OSS designers' activities,

RQ2) what the information needs of designers in OSS projects are, and RQ3)

how to support users to produce reports on HCI issues that align with those

needs.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

40

4 Concepts and Techniques

In this chapter, we outline and describe the concepts and techniques that are

important for the understanding of the work presented in this dissertation. We

contextualize these concepts and techniques further in the chapters 5, 6 and 7,

where we describe their use for the purposes of data analysis and theoretical

foundation.

4.1 Heuristic Evaluation

Heuristic Evaluation (Nielsen and Molich, 1990; Nielsen, 1994a) is a Usability

Engineering (Nielsen and Hackos, 1993) method for finding usability problems

in a system through inspection of its UI. The application of the Heuristic

Evaluation comprises having evaluators examine the UI and judge it based on its

compliance with a set of recognized usability heuristics. Nielsen and Molich

(Nielsen and Molich, 1990; Molich and Nielsen, 1990) proposed an initial set of

usability heuristics to be used for Heuristic Evaluation. In 1994, Nielsen (1994b)

revised those heuristics based on an analysis of 249 usability problems. The

revised set of heuristics is presented in Table 3.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

41

Table 3: 10 Heuristics for UI Design proposed by Nielsen (1994b)

Visibility of system
status

The system should always keep users informed about what is
going on, through appropriate feedback within reasonable time.

Match between
system and the real
world

The system should speak the users' language, with words, phrases
and concepts familiar to the user, rather than system-oriented
terms. Follow real-world conventions, making information
appear in a natural and logical order.

User control and
freedom

Users often choose system functions by mistake and will need a
clearly marked "emergency exit" to leave the unwanted state
without having to go through an extended dialogue. Support
undo and redo.

Consistency and
standards

Users should not have to wonder whether different words,
situations, or actions mean the same thing. Follow platform
conventions.

Error prevention Even better than good error messages is a careful design which
prevents a problem from occurring in the first place. Either
eliminate error-prone conditions or check for them and present
users with a confirmation option before they commit to the
action.

Recognition rather
than recall

Minimize the user's memory load by making objects, actions,
and options visible. The user should not have to remember
information from one part of the dialogue to another.
Instructions for use of the system should be visible or easily
retrievable whenever appropriate.

Flexibility and
efficiency of use

Accelerators -- unseen by the novice user -- may often speed up
the interaction for the expert user such that the system can cater
to both inexperienced and experienced users. Allow users to
tailor frequent actions.

Aesthetic and
minimalist design

Dialogues should not contain information which is irrelevant or
rarely needed. Every extra unit of information in a dialogue
competes with the relevant units of information and diminishes
their relative visibility.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

42

Help users recognize,
diagnose, and recover
from errors

Error messages should be expressed in plain language (no codes),
precisely indicate the problem, and constructively suggest a
solution.

Help and
documentation

Even though it is better if the system can be used without
documentation, it may be necessary to provide help and
documentation. Any such information should be easy to search,
focused on the user's task, list concrete steps to be carried out,
and not be too large.

The output of a Heuristic Evaluation is a list of the identified usability

problems, along with references to which usability heuristics were violated in

each case. Nielsen (1995a) advised that evaluators “should try to be as specific as

possible and should list each usability problem separately”. He mentioned that

if, for example, an evaluator identifies three problems with a certain UI

element, all three problems should be listed in the evaluation report, with the

specific references to the usability heuristics that explain why each constitutes a

usability problem.

Nielsen (1995b) stated that “the lists of usability problems found by

Heuristic Evaluation will tend to be dominated by minor problems”. Jeffries

and colleagues (1991) observed that the results obtained through the application

of the method tend to report a large number of “specific, one-time, and low-

priority” problems. Jeffries and Desurvire (1992) mentioned that the Heuristic

Evaluation appears to expose a smaller amount of more severe, more recurring,

and more global problems when compared with laboratory usability tests.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

43

4.2 Semiotic Engineering

Semiotic Engineering (de Souza, 2005a) is an HCI theory centered in

communication, characterizing HCI as a particular case of human

communication mediated by computational systems. Semiotic Engineering

views a system's interface as a designer-to-user message that represents the

designer's solution to what he believes to be the users' problems, needs and

preferences (de Souza, 2005a; de Souza, 2005b; de Souza and Leitão, 2009). The

contents of this message, the metacommunication message, can be paraphrased

as follows:

“Here is my understanding of who you are, what I've learned you want or need
to do, in which preferred ways, and why. This is the system that I have therefore
designed for you, and this is the way you can or should use it in order to fulfill a
range of purposes that fall within this vision” (de Souza, 2005a).

Through the use of static, dynamic, and metacommunication signs, which

can be presented in various forms, such as words, behaviors and graphics, the

system's UI becomes a representation of its designers at interaction time,

becoming what is referred in Semiotic Engineering as the designer's deputy.

According to de Souza (2012), “the interface enables all and only the designed

types of user-system conversations encoded in the underlying computer

programs at development time. The metacommunication message from the

designers is unfolded and received as users interact with it and learn 'what the

system means'.”

The users' response to the designers' metacommunication is also mediated

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

44

by interface signs. In order to express their communicative intent, users must

understand or learn the signification system in which the designers' message is

encoded. This means that, when using a system, users may consistently fail to

express their intentions because the system designer has not “anticipated the

users' sign-making strategies” (de Souza, 2012). It is worth observing, however,

that Semiotic Engineering's main investigation object is communication, not

learning, of the operational, tactical and strategic aspects of

metacommunication. Designers, from the perspective of Semiotic Engineering,

should be concerned with not only producing a system, but also with

introducing it to users (de Souza, 2005b).

4.2.1 Communicability Evaluation Method

Communicability refers to the system’s ability to communicate the designers’

communicative intent. One of the main evaluation methods in Semiotic

Engineering is the Communicability Evaluation Method (CEM), which

evaluates the communicability of computer systems as experienced by users –

that is, the quality of the reception of the designer's message (de Souza et al.,

1999). The method consists of identifying the communicative breakdowns that

occur while a user interacts with a computer system, and of the classification of

these breakdowns using a set of predefined user utterances (Table 4). A

communicative breakdown is an indication that the designer has failed to

convey his message through the user interface. The utterances are used then to

characterize the user's reaction when a communicative breakdown occurs.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

45

4

Table 5: Description of the user utterances used in CEM (de Souza and Leitão, 2009).

user utterance illustrative symptoms

I give up The user believes that he cannot achieve his goal and
interrupts interaction.

Looks fine to me The user believes he has achieved his goal, although he has
not.

Thanks, but no, thanks The user deliberately chooses to communicate his intent with
unexpected signs, although he has understood what
preferential designer's solutions are promoted.

I can do otherwise The user communicates his intent with unexpected signs
because he cannot see or understand what the system is telling
him about better solutions to achieve his goal.

Where is it? The user knows what he is trying to do but cannot find an
interlace element that will tell the system to do it. He browses
menus, opens and closes dialog boxes, etc., looking for the
particular sign.

What happened? The user does not understand the system response to what he
told it to do. Often, he repeats the operation whose effect is
absent or not perceived.

What now? The user does not know what to do next. He wanders around
the interface looking for clues to restore productive
communication with the system. He inspects menus, dialog
boxes, etc., without knowing exactly what he wants to find or
do. The evaluator should confirm if the user knew what he
was searching (Where is it?), or not (What now?).

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

46

user utterance illustrative symptoms

I give up The user believes that he cannot achieve his goal and
interrupts interaction.

Looks fine to me The user believes he has achieved his goal, although he has
not.

Thanks, but no, thanks The user deliberately chooses to communicate his intent with
unexpected signs, although he has understood what
preferential designer's solutions are promoted.

Where am I? The user is telling things to the system that would be
appropriate in another context of communication. He may
try to select objects that are not active or to interact with signs
that are output only.

Oops! The user makes an instant mistake but immediately corrects it.
The “Undo” operation is a typical example of this user
utterance.

I can't do it this way The user is involved in a long sequence of operations, but
suddenly realizes that this is not the right one. Thus, he
abandons that sequence and tries another one. This user
utterance involves a long sequence of actions, while Oops!
characterizes a single action.

What's this? The user does not understand an interface sign and looks for
clarification by reading a tool tip or by examining the
behavior of a sign.

Help! The user explicitly asks for help by accessing “online help”,
searching system documentations, or even by calling the
evaluator as a “personal helper”.

Why doesn't it? The user insists on repeating an operation that does not
produce the expected effects. He perceives that the effects are
not produced, but he strongly believes that what he is doing
should be the right thing to do. In fact, he does not
understand why the interaction is not right.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

47

4.3 Summary

In this chapter, we presented the concepts and techniques that are relevant to

the understanding of the research presented in this dissertation.

In this work, we used both Nielsen's heuristics and the utterances of the

CEM as coding templates for the bugs reports evaluated as part of our

investigation (section 5.2). Additionally, based on Semiotic Engineering, we

designed a form through each users can report HCI issues (chapter 7). We

describe the employment of these concepts and techniques in the chapters 5, 6

and 7, where we describe their use for the purposes of data analysis and

theoretical foundation.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

48

5 Methodology

In order to address RQ1 and RQ2 presented in section 2.2, this study

investigates how reports of HCI issues fit into OSS designers' activities and

identifies the types of information that designers in OSS projects need in order

to understand HCI issues a given user – possibly technically naïve – faces when

using a certain piece of OSS.

We performed two studies to articulate our findings. One study consisted

of interviews with designers working on two major OSS projects, the GNOME

project, a desktop environment for computers running GNU/Linux, and the

Fedora8 project, a GNU/Linux distribution. The other study consisted of an

analysis of bugs reported in the Bugzilla instance of the GNOME project and

tagged under HCI-related keywords. In this chapter, we present the goals

established and the methodology used for each of these studies.

5.1 Interviews with OSS designers

In order to address both RQ1 and RQ2, we conducted interviews with OSS

designers to understand how evaluation, feedback seeking and review, and

8 http://fedoraproject.org/

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

49

redesign activities take place within their work routine as contributors to the

OSS projects they work on.

To carry out this study, we needed to interview people with previous

experience working as HCI designers within the context of OSS projects. We

conducted five semi-structured interviews (Appendix A) with participants who

were recruited by sending invitations to the design teams of the Fedora and the

GNOME projects. One of the interviews had to be discarded, since the

participant's profile did not match the requirements for this study: his

contributions as a designer to OSS projects were focused mostly on aesthetic

aspects of the interface (such as icon design), and not on its interaction aspects.

Since participants lived abroad, the interviews were conducted via video

chat, using the Google Hangouts video chat tool. Due to hardware limitations,

we recorded only the audio of each interview, later transcribed by the researcher

conducting the study, all with the participants' consent.

The interview transcripts were analyzed twice, each time with a specific

research question in mind to guide the analysis. To address RQ1, “how do

reports of HCI issues fit OSS designers' activities?”, we employed a variation of

the Thematic Analysis technique, called Template Analysis (King, 2012). The

central idea of this technique is to develop an initial coding template, which will

evolve iteratively with the analysis of the collected data, allowing the definition

of additional themes as needed. In our case, considering the question guiding

this analysis, we selected three initial themes: feedback seeking, feedback

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

50

obtainment, and feedback usage. This initial set of themes was refined and

updated multiple times after successive readings of the transcripts. We

considered our template final when it became descriptive enough, without

becoming overly detailed.

To address RQ2, “what are the kinds of information OSS designers need

in reports of HCI issues?”, we employed Thematic Analysis (Braun and Clarke,

2006), a qualitative method for identifying recurrent patterns (themes), to

analyze our data. While transcribing the audio from our interviews, we started

analyzing the data creating themes that described kinds of information in user

feedback that OSS designers find useful and needed for their activities.

The final coding systems for each of our analysis of the transcripts (themes

and template, respectively) is presented in chapter 6, along with the findings of

this study.

5.2 Analysis of Bug Reports

Still addressing RQ1, we examined a subset of the bugs reported under the

Bugzilla instance9 of the GNOME project. Our purpose with this examination

was to gain a sense of the scope of HCI problems currently reported in an OSS

project. We tried to identify common characteristics in our bug data set,

focusing not only on the nature of the reported problems, but also on how they

are reported and by whom. The results of this analysis, in this study, were used

to validate the findings from our interviews with OSS designers through

9 https://bugzilla.gnome.org/

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

51

triangulation.

We manually selected and analyzed a total of 547 bug reports from seven

different products, which are smaller projects inside the GNOME community,

and reported under two main keywords. In Bugzilla, keywords are predefined

by the Bugzilla instance administrator and can be used to tag and categorize

bugs within the bug database. Among the keywords registered for the

GNOME's instance of Bugzilla,10 we found three that matched our interest for

this research, which was to evaluate reports related to HCI problems. Those

keywords were HIG, ui-review and usability, whose descriptions, according

to GNOME's instance of Bugzilla, are presented as follows:

HIG Bug reporting an area where an application does not follow the

HIG (GNOME's Human Interface Guidelines).

Ui-review Indicate a bug field as part of the ui-review. Should be used only by

the ui-review team.

usability This keyword described a usability/user interface change where the

correct behavior is not necessarily obvious and input from the

usability team is desired.

The ui-review tag is suggested by the GNOME Design Team11 as a way to

get in touch with GNOME designers and report design issues. During our

inspection of GNOME's instance of Bugzilla, we observed that the keyword is

indeed used by others than the people in the ui-review team – which, as

10 https://bugzilla.gnome.org/describekeywords.cgi
11 https://live.gnome.org/Design

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

52

informed by GNOME designers via the #gnome-design channel in

irc.gnome.org, is the Design Team itself. Additionally, we chose to discard the

HIG keyword, since it is mostly related to interface compliance to the GNOME

Human Interface Guidelines,12 rather than to problems faced by users.

Table 6: Description of products selected for bug analysis.13

empathy Empathy is a messaging program which supports text, voice and

video chat and file transfers over many different protocols. Empathy

is the default chat client in GNOME, and is based on the Telepathy

framework, making it easier for other GNOME applications to

integrate collaboration functionality.

epiphany Epiphany is the GNOME web browser based on the WebKit

rendering engine.

evolution Spiffy mail/calendar/address book/task list application.

gedit gedit is a small lightweight text editor for GNOME.

gnome-control-
center

Settings

gnome-shell Next generation GNOME desktop shell

nautilus The GNOME file manager.

GNOME's instance of Bugzilla contains bugs related to very different

pieces of software, ranging from “bindings” and “low-level software”, to “core

desktop functionality” and “applications”. We chose to focus on products whose

12 https://developer.gnome.org/hig-book/stable/
13 https://bugzilla.gnome.org/browse.cgi

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

53

audience we considered most likely to also include less technically savvy users.

With this in mind, we decided to pick for analysis bugs associated with two

pieces of desktop functionality (gnome-shell and gnome-control-center), and five

standalone desktop applications (empathy, epiphany, evolution, gedit and

nautilus). A description of the selected products, according to the information

in the instance, can be seen in Table 5.

Finally, in a bug database with more than 700,000 bug reports, filtering by

product and keyword still returned a quantity of reports that was unmanageable

for a manual, qualitative investigation (the procedure is described later in this

section). Because of this, we decided to apply a creation date filter to our data

set, filtering out bugs created before January 1st, 2010. In the case of the pairs

{product: gnome-control-center, keyword: ui-review} and {product: gnome-

shell, keyword: ui-review}, the quantity of bug reports was still unmanageable

within our time frame, so, for these products, we filtered out bugs created

before June 1st, 2011.

Bug reports that matched the aforementioned filtering criteria (Table 6)

were investigated in more depth. Among the many fields in a bug report, we

observed reporter (user or developer, according to how they were labeled by

Bugzilla), description, and attachments. We focused this analysis on the initial

reporting of a bug, not investigating in depth the subsequent discussion about

the problem it reports and its possible solutions.

We used the “description” field as our main source of investigation. We

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

54

analyzed its contents from a qualitative perspective, following the more

ethnographic low-level style of investigation presented by Twidale and Nichols

(2005) in their study of usability discussions in OSS development. This means

that, when reading reports, we tried to focus on what was “in some sense

'surprising' in the light of (...) standard HCI research” (Twidale and Nichols,

2005).

Table 7: Our bug sampling per product and per keyword investigated.
14

product
keyword

Total
ui-review usability

empathy 5 10 15

epiphany 6 17 23

evolution 5 45 50

gedit 0 14 14

gnome-control-center 93 24 117

gnome-shell 236 39 275

nautilus 14 39 53

547

In addition, to gain a better understanding of the kind of HCI problems

reported, we also tagged the description of each bug using two different sets of

tags, one based on the heuristics of the Heuristic Evaluation (Nielsen, 1994b;

section 4.1), and another based on the user utterances of CEM (de Souza et al.,

1999; section 4.2.1). The elaboration of this procedure was based on the work of

14 https://bugzilla.gnome.org/browse.cgi

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

55

Salgado and colleagues (2006), a comparative study of three distinct HCI

evaluation methods: Cognitive Walkthrough, Heuristic Evaluation, and CEM.

In our work, we mostly focus on the differences observed between the last two

methods, especially in terms of the kinds of problems identified by each of

them. Examples of the procedure can be seen in Appendix B.

According to Salgado and colleagues, the problems observed by Heuristic

Evaluation are mostly related to interface characteristics, noting the presence or

absence of general design guidelines. CEM, on the other hand, proved itself to

be more suitable to the identification of interaction problems, revealing issues

related not only to the execution of a specific procedure, but also to the logic

applied to it. With that in mind, we believe our analysis of the reports in the

light of those two evaluation methods highlighted tendencies in their contents

in terms of the distinction of interface and interaction issues.

The findings of this analysis of bug reports is detailed in chapter 6.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

56

6 Feedback Management and Information Needs

In this chapter, we present the results of the studies described in chapter 5, and

discuss our findings with regards to RQ1 and RQ2 (section 2.2). The four

interviewees that participated in our interviews will be identified in this chapter

as P1 to P4.

6.1 RQ1: How do reports of HCI issues fit OSS designers' activities?

As mentioned in section 5.1, the transcripts from the interviews with OSS

designers were analyzed twice, each time with a specific research question in

mind to guide the analysis. The first analysis, conducted using the Template

Analysis technique, aimed to explore RQ1, “how do reports of HCI issues fit

OSS designers' activities?” The coding template originated from the Template

Analysis of the interviews consists of a hierarchy of themes, in which the first-

level themes encapsulate the second-level themes. The result is the coding

template shown in Table 10.

In this section, we describe each of the first-level themes in function of the

second-level themes related to it. Each theme reveals aspects of how feedback

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

57

and reports fit OSS designers' routine and activities. When pertinent, we

triangulate those findings with the findings of our analysis of bug reports. We

have omitted the identification number of the bug reports we quote, as well as

their authors. However, all the information on the bug reports we evaluated is

publicly available online.

Table 8: Coding template created after the interviews from the first study (section 5.1)

First-level
themes

Description Second-level themes Description

A) Designers'
activities

What activities OSS
designers perform in
their routine

A.1) Design activities
How OSS designers approach
user interface design

A.2) Evaluation activities
How OSS designers conduct
evaluation of their design
solutions

B) Getting
feedback

How and why OSS
designers seek and obtain
feedback

B.1) Purpose
Why OSS designers want and
need feedback

B.2) Sources
Where OSS designers seek and
obtain feedback

B.3) Designer's attitude
Feedback-seeker and feedback-
receiver attitudes

C) Using
feedback

How OSS designers
interact with obtained
feedback

C.1) Motivations
Why OSS designers work on a
certain piece of feedback

C.2) Obstacles
Problems faced by OSS designers
when managing feedback

A) Designers' activities

The themes under “Designers' activities” describe activities OSS designers tend

to perform within OSS projects. These themes reveal aspects of how common

design process stages take place within OSS projects.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

58

A.1) Design activities

This theme is related to the activities the interviewees perform when designing

or redesigning a user interface solution. All OSS designers interviewed

mentioned goal and requirements definition as the first task in their

design/redesign processes.

“So, in the case where I did the [software name] application, to begin with, I had
a problem described. I had a specification of the objectives of the application.”
(P1)

“That [initial process] generally takes the form of identifying a need, and what
are the goals... That is something we put a lot of emphasis on: being very clear
about what kind of problems we need to solve for the user, and how it's going to
fit the overall system.” (P4)

Most of the interviewees stated that those requirements are often derived

from evaluating existing solutions, and from what they consider to be standard

knowledge on user interface design.

“(...) I'd say we define those goals we want to address, and then we look at
relevant art, we look at existing solutions and see what we like and don't like of
each one (...)” (P4)

“I guess [I derive requirements] from common sense, other systems, books,
articles, past experience... (...) And also what other pieces of software solve this
particular problem, and try to see what they did well and what they did not do
so well.” (P1)

Some interviewees also mentioned the community as an input source

for defining goals and requirements of a certain feature or application.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

59

“I speak with people who are, hm, what I would call the stakeholders of a
feature, when I start to design a new feature. A lot of times that would be
somebody, hm, like, community members. (...)” (P3)

“I suppose what is relatively unique in [name of the project] in terms of design
might be... Generally speaking, we are dependent on developers and
volunteers coming forward and discussing those projects.” (P4)

Once the goals of the design are considered to be well-established, all OSS

designers stated their next step in the process would be to start creating

wireframes and mockups of the actual interface solution. Those materials are

considered by the interviewees to be the core output of their design activities.

“I usually work on sketches that I basically use as a personal way to get ideas in
paper, but I usually don't use it for other people's consumption, if that makes
sense. (...) When I want to get feedback, I usually work on wireframes and
mockups, on Inkscape.” (P3)

“[What is the output of your design activities?] Mostly wireframes and
mockups. They are often enough to give an idea of how the thing should work,
and to open a dialogue with the developers of that thing, at the same time.” (P1)

Some interviewees, however, mentioned they tend to avoid committing

to complete specifications of their mockups and wireframes. They stated that

they usually leave a lot of things on the design solutions to be decided and

negotiated along with the developers who will implement the feature or

application.

“We mostly produce snippets of documentation, tops. The funny thing is that

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

60

our sort of documentation process happens mostly over a dialog with the
person who's supposed to implement it, rather than something that is written
down. That makes some room for negotiation.” (P1)

“We usually take the process to a stage where we have initial designs, we have
goals, but we usually have not worked out all the details. That's partly because
we're leaving quite a lot of fruits dangling around to figure out with
developers. We don't get a say on what developers should be working on, so we
try to stick together with them.” (P4)

“I mean, we work with them [developers] to flesh out the details, we try to have
design and development fairly coordinated. We don't really try to have
complete specifications because it doesn't fit quite very well with the kind of
process we have, where we want developers quite involved in design, helping
to solve problems as we go.” (P2)

P2 also illustrates how the collaboration with developers might also

influence their process in terms of redesign:

“(...) they [developers] come to us and ask for a mockup or for explaining a
certain mockup. Like, “hey, we have this mockup, and we're having this kind of
issue with it, can you change it?” or “what can we do?”. You know, this kind of
back and forth with developers.” (P2)

As it is possible to observe, interaction with developers plays a big role in

the design activities performed by the OSS designers interviewed. This means

that communication and iteration with developers influence design decisions

and directions.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

61

A.2) Evaluation activities

This theme uncovers aspects of how evaluation takes places within the

interviewees' activities as an OSS designer. All the interviewees mentioned

inspection methods, such as the Heuristic Evaluation, as their main tool for

evaluation. Often applied close to the end of release cycles, those methods often

take the form of a non-systematic exploration of the user interface, trying to

cover what are expected to be the main interaction paths of the software in

question.

“One thing that I tend to do a lot is to build the stack and explore it, trying to
identify simple heuristic UI issues.” (P1)

“I take our unstable releases, and I run them, inspect them. Then I identify stuff
that looks wrong. Like, if there's something like... You know, some regular
Nielsen Heuristic Evaluation and usability studies.” (P2)

“When we develop a piece of software, we will tend to, at some point towards
the end of the development process, do a review of some kind. That will
generally be more of a heuristic thing, where we look at the software in detail.”
(P4)

The OSS designers interviewed also observed that the outcome of this

kind of evaluation usually takes the form of a series of bug reports that should

ideally be fixed before the end of the release cycle.

“So then [after building and reviewing the software], I tend to screen shot the
problems and report them as issues in the bug tracker”. (P1)

“At this point [when doing inspection close to the end of the release cycle], I will
be filing a lot of bugs. That's kind of a polishing and refinement stage, when we

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

62

are talking about a new piece of software. If it is something that is already out
there, then it is more of an ongoing process of release review.” (P4)

Once a software is released, evaluation activities also take the form of

what P2 called “Bug Review”. This basically means browsing through bugs

reported under certain reserved keywords (such as “usability” or “ui-review”),

and then reviewing the design as/if needed. P2 explains it as follows:

“And there are things that we do all that time, which is doing bug review, for
example. Looking through the bugs that people filed against it [the software]
under the tag of usability, and making sure we didn't miss anything, if it's
something we did talked about before or if it should be included in the
mockups.” (P2)

All the OSS designers interviewed mentioned Bug Review as a daily

activity and one of the most time-consuming ones.

“Reviewing bugs usually takes a lot of time because we need to understand
what this reporter meant, and, most of the time, engage with them in order to
get missing information. Now imagine doing that for fifteen bugs a day.” (P1)

“I have to engage in some sort of back and forth with reporters about 80% of the
time, just to figure out what they were trying to do, why, and in which ways. I
invest a big part of my time on this. Much more than I'd like to.” (P2)

Usage of investigation and observation methods is not usual, according

to the interviewees. P1 and P3 observed user recruitment and participation as

the main constraint for the use of methods from this nature. P4 agrees with

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

63

them, but also adds that investigation and observation methods are often too

time-consuming, making their usage unmanageable within short release cycles

and small design teams, both characteristic of OSS projects. Among the OSS

designers interviewed, only P2 had applied observation methods in the context

of OSS development. P2 recognized the problems stated by the other

participants and also added communicating the value of this kind of method

to developers is not often easy:

“I guess the problem, the reason that we don't do it [user testing] as often as
maybe we should is that you really need the development team to commit to
it. You know what I mean, you don't want to spend, like, 3 months with
usability tests and getting all the data there, to get developers, like, “whatever!”.
You want them to commit and be sure they are gonna care and get the
community to care.” (P2)

Apart from that, some of the interviewees also noted that, given the

collaborative nature of OSS development, reflection and discussion on the

designs is a constant activity during the development process. P4 illustrates this

when asked how evaluation takes place before the actual release of software:

“We are always reflecting on what we produce. There is always people coming
forth with different perspectives and thinking quite deeply about the different
use cases. So, hm, somehow we evaluate the design as it goes.” (P4)

Concluding, from what was exposed by this theme, it is possible to

observe that bug reports play an important role on the evaluation activities

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

64

performed in OSS projects. Depending on the source, they might act as input

for evaluation, or as outcome of it.

B) Getting feedback
The themes under “Getting feedback” uncovers aspects of why and how OSS

designers deal with feedback from users.

B.1) Purpose

This theme addresses the different reasons why OSS designers value and

consider feedback from users as an important input for their design activities.

All the OSS designers interviewed claimed to use feedback from users as input

for evaluation activities. They observed that feedback analysis often leads to

either the redesign of a user interface (or, more frequently, of parts of it), or the

“refinement” of a certain piece of the user experience. P1 and P3 summarize

this, by saying:

“Well, this [feedback] is the way I get review, hmm, evaluate what I do, what we
create. We often get an overall feeling of how people are reacting to a release, but
it's hard to tell what exactly is wrong. It's much valuable when we get to see
what's actually the problem. I tend to keep this kind of stuff in the back of my
mind when... I mean, for example, for the Shut Down button, we got a lot
feedback from various people from the internet, we thought about it, then we
changed it.” (P1)

“But it's [why I look for feedback] like... Are people responding positively to it?
Or are they responding negatively? If they are responding negatively, is it because
of a technical difficulty? Like, is something not working correctly? Or is it a
bug? Or is it because of actual poor design? Or poor User Experience? This is
the kind of thing you can use to iterate on a existing design and try to make it
better, and, you know, start all over again.” (P3)

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

65

P3 also mentioned that this kind of feedback-oriented evaluation is more

suitable to OSS development than other kinds of evaluation methods. P3

explains this by pointing again the difficulties of applying other evaluation

methods that require user participation:

“In an ideal world you'd have some user testing, that you could put users in front
of it [software], see how they do things and use that to judge the design. I very
rarely get that chance, to have access to actual users. So, in a lot of ways, it kind
of... You kind of have to judge by yourself and from the feedback that you get
from developers and the people that use it.” (P3)

In addition, three of the four interviewees mentioned feedback as a way to

leverage HCI activities among OSS community members. In this context,

feedback might be presented as a way to both inform design decisions and to

reinforce the value of HCI design within the OSS development process. P1 and

P3 illustrate these uses, as follows:

“You know, when people provide good feedback, we are able to better inform
our decisions as well. I mean, like... We can then say: “We changed that, because
people had this and this problems with the previous solution”. People don't deal
very well with change. When we are able to explain changes based on real
feedback, people seem less resistance. They then believe on our work.” (P1)

“A lot of problems come from half-implemented designs. Feedback on problems
that occur because of half-implementations is often a great way to communicate
the value of our work to developers. You know... “Hey, remember this was
supposed to do this too?” or “We were supposed to have this other stuff too”,
you know? Then I get developers to get back to that and get work done, so we
can provide fixes to people. Feedback is often how I can inform developers why

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

66

it is important to implement a feature or something.” (P3)

It is possible to observe that user feedback is an important tool for

designers in OSS projects. It enables them to iterate on their design decisions,

explain them to the broader OSS community, and to influence the development

process, based on users' needs.

B.2) Sources

This theme describes where OSS designers seek and obtain feedback from their

users. All four interviewees also mentioned the social media websites Google+

and Twitter as an important source of feedback, even though it was observed

that the contents of this kind of feedback tend to vary. P3 exemplifies this, by

saying:

“It really depends on the source. Bug reports are a bit more detailed. Social
media... Like, Twitter, of course, you only have a 140 characters, right? So it's
usually like “I couldn't do X, this sucks!”, you know? On Google+, people tend
to be a bit more descriptive, but the somewhat nasty tone is there.” (P3)

P2 exposes the same issue, but mentioned that, when having the

opportunity to engage with the reporter through those social media websites,

he gets to figure out missing information and, then, file a more complete bug

report:

“Occasionally, people on Google+ or Twitter, whatever, complain about it [the
design]. And if I have the time, when I see it, I'll try to engage with them and
try to figure out what they were trying to do. It's actually more useful than a
bug report, because, if the person engages with me, then I can try to find right

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

67

away “oh, you were trying to do this”. I do end up filing bugs that way, but
having the whole context in mind then.” (P2)

Blog posts are another relevant source of feedback mentioned by the OSS

designers interviewed. This kind of feedback usually consists of a compilation

of HCI issues, and/or an expression of how one feels about a certain OSS or

OSS community. Blog posts might be time-consuming for OSS designers

depending on their repercussion in the Comments section or in social media

websites like reddit,15 Hacker News16 and Slashdot.17 Feedback obtained through

blog posts often generate more feedback.

Finally, three of the four interviewees mentioned that they frequently

obtain in-person feedback. P2 and P4 mentioned that a lot of feedback comes

from meeting people during OSS events, project-focused or not:

“Or just by meeting people [I get feedback]! I was at a conference just last week
and I think, well, pretty much everyone that I spoke to had a piece of feedback
or opinion about the design. There's some useful stuff out there, but you gotta
spend some energy on processing it.” (P2)

All the OSS designers interviewed mentioned that feedback coming from

what P4 called “inaccessible users” is very important and valuable. Considering

the onion-like structure of OSS communities mentioned in section 3.1,

15 http://www.reddit.com/
16 https://news.ycombinator.com/
17 http://slashdot.org/

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

68

“inaccessible users” would be equivalent to the Passive Users layer, the outer

layer of the structure. Differently from the other layers, the Passive Users layer

includes non-technically-savvy users, whose feedback is important for OSS

designers.

“You know, we always get feedback, but feedback from a certain subsection of
people. We hear a lot from tinkers, but necessarily from the average desktop
user. We don't really get feedback from normal people, people that just want to
get their jobs done. This is bad, because their feedback is really useful too,
especially if we want to make software for a wider audience. People in our
community can be really loud about certain problems, but they also have a
strong technical bias. Is that something most of our user base run into? There's
no way to know. A big challenge is that we currently hear mostly from one
side.” (P2)

“There are some people that actually have friends and family members that use
our software, and I often get feedback from them. Yesterday, one friend came to
me and said: “So, my wife is using [project name] and she wasn't able to do
something she wanted to do, so I'm here to ask you how to do it”. I believe this
is a very important piece of feedback. First of all, because that's a bad experience
in which someone was not able to do something. And second of all, because it is
a piece of feedback I would not get if I did not have that indirect channel. It's not
an accessible user, but one we definitely reach to. Making things easy for
everybody is very important.” (P4)

Additionally, all interviewees mentioned bug tracker tools, such as

Bugzilla18 and LaunchPad,19 as a main source of user feedback. As mentioned

before, Bug Review is performed in a daily basis and is one of the most time-

consuming tasks of OSS designers.

18 http://www.bugzilla.org/
19 https://launchpad.net/

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

69

P1 and P4 observed that feedback coming from bug trackers tend to focus

on what P1 called “usability problems”, and not so much on “interaction and

experience problems”:

“We tend to get a certain type of feedback from bug reports, people spotting
details that should be fixed. Quite often this is, like, people observing some sort
of aesthetic issues, or that something should be renamed or is not consistent with
whatever stuff... Another quite frequent is 'I can't find something' or 'Something
is not discoverable'... You know, stuff like that(...) Details about the interface
itself. I'd say we get a lot of bugs on this kind of usability problem, but not so
much on actual, you know, interaction or user experience problems. I mean,
people having issues with their workflows and that kind of stuff. ” (P1)

“A lot of times I get reports from people spotting minor issues, often issues that
the designers and the developer already spotted through usability
inspection. (...) I mean, those reports are of course important, in special when
they are not so obvious, not stuff that we could easily spot ourselves. Those in
particular, are very nice. (...) It's rare that I get to spot people talking about their
experiences at a higher level.” (P4)

Those statements are very closely aligned with the results of our analysis

of bug reports in the GNOME project's bug tracker. As previously mentioned

(section 5.2), we tagged each bug report in our sample using two different sets of

tags, one based on Nielsen's heuristics (Nielsen, 1994b), and another based on

the user utterances of CEM (de Souza et al., 1999). This procedure was based on

the work of Salgado and colleagues (2006), a comparative study of three distinct

HCI evaluation methods, including the Heuristic Evaluation and CEM.

According to Salgado and colleagues, the problems observed by Heuristic

Evaluation are mostly related to interface characteristics, noting the presence or

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

70

absence of general design guidelines. We believe those are related to what P1

referred to as “usability problems”. CEM, on the other hand, proved itself to be

more suitable to the identification of interaction problems, revealing issues

related not only to the execution of n specific procedure, but also to the logic

applied to it. We believe those are related to what P1 referred to as “interaction

and experience problems”.

In a sample of 547 bug reports, we were able to apply at least one heuristic

tag to 459 bug reports (83.9%), and at least one utterance tag to 205 bug reports

(37.5%). These results align with the statements of P1 and P4 with regards to the

kind of problems reported the most through bug reports. Besides that, It's

worth noting that some bug reports had more than one heuristic/utterance

tagged to them, and some had none.

Table 9: Distribution of bugs tagged with Nielsen's heuristics.

Heuristic # % from 547

Flexibility and efficiency of use 183 33.5%

Aesthetic and minimalist design 150 27.4%

Consistency and standards 123 22.5%

Error prevention 60 11%

Recognition rather than recall 51 9.3%

Visibility of system status 46 8.4%

Help users recognize, diagnose, and recover from errors 34 6.2%

Match between system and the real world 32 5.9%

Help and documentation 18 3.3%

User control and freedom 15 2.7%

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

71

712

Table 10: Distribution of bugs tagged with the utterances of CEM.

Utterance # % from 547

Where is it? 105 19.2%

I can't do it this way. 69 12.6%

What happened? 55 10.1%

What's this? 55 10.1%

Oops! 28 5.1%

What now? 21 3.8%

Why doesn't it? 17 3.1%

Where am I? 15 2.7%

Thanks, but no, thanks 5 0.9%

Help! 0 0

I can do otherwise. 0 0

I give up. 0 0

Looks fine to me. 0 0

370

Table 8 and Table 9 present the results of this tagging process using

Nielsen's heuristics and the utterances of CEM, respectively. From both tables,

it is possible to observe that the occurrences of Nielsen's heuristics are much

more abundant than the occurrences of the utterances of CEM. Among

Nielsen's heuristics, we observe an outstanding number of occurrences of

problems tagged with the Consistency and standards, Flexibility and efficiency of

use, and Aesthetic and minimalist design heuristics (Table 8).

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

72

Additionally, among the utterances of CEM that were most often found

in our analysis, we have What happened?, Where is it?, and What's this? (Table 9).

According to Silveira and colleagues (2004) (section 7.1), these three utterances

reflect problems associated to operational-level affordances, meaning they are

related to “the immediate and individual actions that users need to perform”.

This definition is somewhat close to what P1 described as “usability problems”.

Higher affordance levels include problems associated to

“conceptualizations and decisions involved in problem-solving processes”

(strategic level) and to “a plan, or a sequence of actions, for executing a certain

task” (tactical level) (Silveira et al, 2004). It is possible to observe in Table 9 that

problems at higher affordance levels were not frequently reported. The

exception is the I can't do it this way utterance (a strategic or tactic utterance),

used frequently in the bug reports in our sample as an I can't do it this way, but

I'd like to utterance. All bug reports tagged with the I can't do it this way

utterance described the reporter's wish to be able to accomplish a certain task in

a way he is not currently able to.

Summarizing the findings in this theme, OSS designers use multiple

sources to obtain feedback: bug tracker tools, social media websites, blog posts,

and in-person conversations. However, most of these sources present limitations

OSS designers have to deal with, such as being too time-consuming to process,

consisting of incomplete pieces of feedback, or being rather inaccessible.

Additionally, we observed that bug tracker tools, OSS designer's main source of

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

73

feedback, often provide a limited variety of feedback, since bug reports tend to

focus on operational issues, and not so much on more abstract and/or broader

aspects of interaction.

B.3) Designers' attitude

This theme exposes different attitudes OSS designers adopt when getting

feedback: seeker, when actively searching for feedback, and receiver, when

obtaining feedback in an unsolicited way.

All interviewees demonstrated to assume a seeker attitude when dealing

with feedback in the form of bug reports. Browsing bug trackers' databases is

one of the main activities performed by the interviewees, and something they

expend a considerable amount of their contribution time on. Three of the four

OSS designers interviewed mentioned being subscribed to bug feeds, meaning

they are directly notified about bugs submitted against a certain product as P4

explained:

 “I do subscribe to our main [product name] bug feed, so every time a new bug is
filed, I get a notification on that. So I get a lot of feedback from that already. I
review those everyday.” (P4)

P4 and P2 also mentioned that they explicitly ask to be forwarded any bug

reports on HCI matters that they might have missed when browsing through

the bug tracker's database. It was mentioned by both participants that this kind

of bug report is usually written in fairly technical language, so that it becomes

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

74

difficult to spot that the bug actually reports an HCI problem:

“I also specifically ask developers to cc me to every bug I might have missed and
where they feel a design discussion is needed. That happens a lot when when the
reporter is a fairly technical user. Some reports are fairly technical, and I don't
even know what they are talking about, so those just pass me by, even when they
are actually related to a design matter.” (P4)

P1, P2 and P4 observed that bug reports get such attention mostly because

of its medium, since the bug tracker tools in which bugs are reported allow for

easy engagement of developers:

“A good thing about bug reports is that they allow you to engage the needed
parts fairly easily. I mean, developers already live in [bug tracker tool], and use
it to solve a number of issues and coordinate development. The degree of
indirection is much smaller when you just solve stuff through the bug tracker.”
(P1)

Indeed, in our analysis of bug reports, we observed that 48% of the bug

reports in our sample had comments from developers and designers

discussing solutions for the reported problem. We also noted that developers

of the Empathy chat client, for example, used bug reports to foster discussion

on the design or redesign of certain features. In these cases, the developer filing

the bug report describes the feature in question and explicitly solicits input

from a designers, for example:

“As discussed on IRC, one bug for all my niggles about the update accounts UI.
I've attached 2 screenshots, one for editting an online account, one for editting
an offline account.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

75

Some of these probably need an actual designer looking at it :)”

After that, the developer in question lists a number of changes in the user

interface that should discussed together with a designer. Another example

describes a review of part of the user interface, given the removal of a certain

user interface element:

“Now that we are about to remove the roster's menubar we should consider
doing the same in empathy-chat.”

Again, the developer filing the report in question lists a number of user
interface changes that should be made, and then asks for a designer's opinion on
them. In both bug reports mentioned, designers and developers negotiate, in the
bug report page, how the user interface should be implemented.

P2 was the only interviewee to mention other strategies when seeking for

feedback. Whenever P2 iterates on a design, he blogs about it in order to get

feedback before the design is actually implemented:

“When I have a certain piece of design done, I'll do a blog post about it, I'll
show sketches that we have for it and ask people “what do you think about
this?”. So, I get a whole pile of blog comments and private emails from that blog
posts and buzz from social media, and I'll go through it. (...) Then I try to do a
round of follow-up posts, like, “so this is what you said, this is what I'm
trying”.” (P2)

When not referring to bug tracker tools, the interviewees adopt a

receiver attitude towards feedback, especially since bug reports consume so

much of their contribution time. All the OSS designers interviewed mentioned

not suffering from a lack of feedback, constantly receiving references, from

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

76

other members of the community, to pieces of feedback:

“Usually, if someone sees a certain piece of feedback on the internet, they will
bring it to my attention. It's almost like a network of people looking into this,
forwarding feedback to us. This might tends to be a bit overwhelming from
time to time, since we're not a bunch of designers and people expect us to
address at least a big part of it [the feedback].” (P3)

“I definitely don't think we suffer from a lack of feedback at all (laughs). I
don't usually need to seek for it, I already get a lot of feedback coming for me
from developers and colleagues. Generally speaking, I don't have to ask for it, I
just get it all the time.” (P4)

It was possible to observe the OSS designers interviewed adopt a seeker

attitude towards feedback reported via bug tracker tools, while they tend to

adopt a receiver attitude towards other sources of feedback. The ability to easily

engage developers in the discussion of a report influences the attitude adopted

by the interviewees towards feedback.

C) Using feedback

This theme explores aspects of how the OSS designers interviewed interact with

and manage feedback obtained from different sources.

C.1) Motivations

This theme uncovers what motivates the interviewees to work on the problems

exposed by a certain piece of feedback. The interviewees were unanimous in

stating that, in general, the quality of a report does not affect their

motivation, but rather their ability to work on a given issue. An exception to

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

77

this is feedback where the reporter adopts an aggressive or negative attitude

towards the designer or the community. This kind of feedback was mentioned

to be quite demotivating for the OSS designers interviewed, and yet quite

frequently observed:

“When feedback is just openly aggressive, which it is a lot of times, I find it
really demotivating to work on. Stuff that just says, like, “this version sucks, I
can't use this”. The attitude is really demotivating and the content itself is
not even helpful so that I can do something about it. When people just say
“why did you made this thing like this? This is really stupid, I hate you”, you
know? It is just plain offensive. (P1)

“One thing [that is demotivating] is the emotional outbursts that you see
online. (...) More serious than that [in relation to another kind of feedback] are
the expressions of anger, upset or disappointment, or the personal accusations
about the designers or community, that we frequently encounter around. These
make it difficult to engage in a conversation about what the actual issues are.
Personally speaking, I would also say that they can make designing in the open
an emotionally draining experience and far less attractive than it should be.”
(P4)

Apart from that, the OSS designers interviewed were also unanimous in

stating that the amount of users affected by an issue is another strong

motivational factor in terms of prioritizing issues. One reason for this is that

wider adoption of OSS is of great concern to the interviewees, especially

because of their commitment to the Open Source ideology and to making

software available and usable to everyone.

“I mean, if a lot of people are having a problem, that's motivational. But also...
Like, if people are dropping out, stopping to use the software because of this

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

78

issue, that's also a big motivator.” (P1)

“It [my motivation] really depends on how many people it [the problem] affects.
You know, how many people we perceive it will affect, and how badly it affects
them. Those are very important parts of what problems to solve first, because we
want to make our software, free software, usable for as many people as
possible.” (P3)

“If it's something that may affect a lot of people, than I add it to my personal
list of tasks, and might mention it to other designers and developers.” (P4)

At the same time, both P1 and P4 mentioned that feedback that reports

problems they relate to tends to catch their attention:

“[asked about motivations to work on a given issue] Well, I'd say it grabs my
attention when it's about something I personally identify with.” (P1)

“Generally speaking, when I review them [bug reports], what I'll do is check on
the ones that look interesting to me, meaning something that affects the user
experience in a way I can relate to, something I can connect to.” (P4)

This interest in reports that describe issues with which they personally

identify themselves might be associated with Raymond's (1998) archetype of

developers “scratching their personal itches” in OSS projects.

Another strong motivational factor for the OSS designers interviewed is

how the reported problem fits into the overall “design vision” and the

development priorities of their respective projects:

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

79

“The way we have been prioritizing problems... I mean, this is more of a release
decision. We really need to focus on certain aspects or parts of the software from
release to release. So, for example, when I go through a list of usability bugs, I
sort them, I make sure all the release-relevant bugs are at the top of the list and
that we get to work on them first.” (P2)

“Well, you cannot solve every bug, you have to work on certain ones that fit into
your priorities and your scope or your design basis, your design vision (...)
Because of the nature of Open Source, you often get bug reports on really
specific uses and expectations. There might be bugs that are possibly genuine, but
then they are not within our power, or willingness, to fix, considering the overall
approach that we're taking.” (P4)

Finally, as mentioned before, P3 stated that problems originated from

partial implementation of their designs also tend to catch his attention,

because they represent a way for him to push developers to complete the

development of a certain feature or software.

 In conclusion, when choosing what issues to work on, OSS designers take

into consideration the amount of people an issue affects and how solving this

issue fits into the project's priorities and design message. Additionally, feedback

reported in an aggressive/negative tone was observed to be demotivating to the

interviewees and discouraging when it comes to designing in an open and

transparent manner.

C.2) Obstacles

This theme exposes the obstacles the OSS designers interviewed face, when

managing and addressing problems reported through feedback. The

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

80

interviewees were unanimous in observing three main obstacles in dealing with

feedback. The first one is related to the negative and/or aggressive attitude

adopted by reporters frequently, previously mentioned in theme . The

interviewees mentioned that those reports tend to be very unspecific about

what the actual issues are, offering little useful information for them.

Engaging with the reporter to gather more information about the problem

when the reporter adopts that kind of attitude seems to be ineffective, according

to the OSS designers interviewed.

The second major obstacle faced by the interviewees exposes a mismatch

between the information they need in order to understand and work on a

given problem, and the information that is actually provided by reporters.

It was observed by all interviewees that, more often than not, reports are

unclear about what the actual issue is, missing important information for its

characterization.

“[when asked about obstacles for finding useful feedback] Bugs that are generally
unhelpful, but well-intentioned, are bugs that don't have enough information
on what the person was trying to do, or even what exactly happened. Like, we
had a bug that I was going through this week, and the guy was saying “oh, it
crashed when I did this”, but it didn't have enough information for me to
understand. I mean, crash? How did it crash? There's a million ways a thing can
crash.” (P2).

“One of the things that make my life hard is what I describe as “ incomplete
reports”. So, it's people not clearly explaining what are the things they were
trying to achieve, what the exact problems that they faced are, etc. (...) That
makes it really hard for me to act on those problems.” (P4)

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

81

In fact, in our analysis of bug reports, we noted that interaction with the

reporter, for the purposes of clarifying the reported problem, was attempted in

41.8% of the bug reports in our sample. It is worth observing that, when this

analysis was conducted, 19.5% of the bug reports in our sample had no

comments. It is not possible to determine the reasons for the lack of comments

in those reports, but, since they are not marked as closed, interaction with the

reporter might still occur.

This mismatch might also be noted in reports that consist of a solution to

a problem, missing information and details about what the problem is and how

it was observed. These reports represent a subset of the “incomplete” reports,

since they also fail to provide information relevant to the problem's definition,

as P2 and P3 explains:

“Another type of bug that we get a lot, that is well-intentioned, but not useful at
all, is like, say... “I want you guys to do it this way” or “I think X should be Y”,
and not explain why or what they were trying to do or what the problem was
that they are trying to solve with this proposal.” (P2)

“A lot of times, people that file UX bugs don't necessarily know that much
about UX, but they think they do. They tend to give me a solution, instead of
a problem. Like, “this should be X, instead of Y”. And I'm like... “Well, maybe”.
Usually I have to try and reach out to that person and, hm, like “why do you
think it should be like this?”. You gotta understand why they think this is better
or important and, especially, what is the underlying problem that they think
they are solving.” (P3)

This tendency of reporters to provide a solution instead of a problem was

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

82

confirmed by our analysis of bug reports. For each of the bug reports in our

sample, we noted either the reporter described a problem, a solution or both.

Our results suggest that 19.3% of the bug reports analyzed described a problem,

39.5% described both a problem and a solution, and 41.2% described only a

solution.

The third obstacle the OSS designers interviewed mentioned is related to

understanding how different reporters express their issues, as P4 explains:

“It's very hard to identify that two usability bugs are actually the same, because
they are very different from one to another. I mean, [bug tracker tool] actually
offers facilities to identify if two bugs are similar, but with usability bugs, that's
virtually impossible. It's all on how someone express themselves and this
varies a lot from person to person. People use very different terms for the same
things.” (P2)

“Usually, it is pretty hard to understand what people are describing. It's
different from when you're talking to other designers and developers, and we
have this kind of common language, and we describe things mostly with the
same terms. (...) Often, I have to go into fairly lengthy conversations with
reporters just to understand what are they talking about.” (P4)

We observed evidence of this obstacle in bugs considered duplicates of

each other in the GNOME project's bug tracker. During our analysis of bug

reports, we observed occurrences of bugs with very distinct summaries and

descriptions, which were identified reporting the same issue. For example, the

following set of bugs, represented by the bugs' summaries, were marked as

duplicates of each other:

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

83

• Don't use “ctrl” modifier for delete action

• Change the Ctrl+del key back to Del and use notifications instead

• Add dconf setting to customize “Move to Trash” key binding

• nautilus uses CTRL+Delete instead of Delete

• Ctrl-Delete and Shift-Delete make it very easy to accidentally delete a file

instead of moving it to the trash

• delete key does not work

• Can't delete with “del” key after setting file deletion shortcut to “del”

• Pressing delete while renaming file moves it to Trash.

• gtk_window_activate_key messes up key bindings.

It is possible to observe that the aforementioned bugs are phrased in very

distinct ways, even though, according to developers/designers, they all report

the same issue, the fact that it is not possible to delete files by pressing just the

“Delete” key.

This obstacle is aligned with the findings from Furnas and colleagues'

study (1987), focusing on the phenomenon of word choice for UI objects by end

users. Observing spontaneous choice for describing elements of five different

application-related domains, they observed very high variability rates on the

terms chosen by users to describe UI elements and interaction actions.

Additionally, P3 also observed that, given the lack of opportunity to

apply observation methods, it might be hard to identify when their design

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

84

solution is actually succeeding in its goals:

“I don't have resources to do good user testing. So I really rely on people to
bring the problems themselves. I can't get proactive, I just have to sit and hope
people care enough to actually give feedback. And generally it's hard to know
when your design is succeeding, but it's easy to know if it's failing. Because
people will complain more than they will praise. So, it's almost like “no news is
good news”. If you don't hear anything back from people, hm, so, “this is
probably fine, because no one is complaining about it”. But, you know,
sometimes it just doesn't bother people enough for them to complain about.”
(P3)

In general, the major obstacle the interviewees face when dealing with

feedback is related to this mismatch between the information they need to have

in order to understand and address an issue, and the information that is actually

provided by users. This highlights the need for supporting users in creating

reports that are more closely aligned with OSS designers' needs.

6.2 RQ2: What are the kinds of information OSS designers need in

reports of HCI issues?

As previously mentioned, we analyzed the transcripts of the interviews twice,

each time with a different research question in mind. For the second analysis,

we focused our efforts in exploring the kinds of information that OSS designers

look for in user feedback. As explained in section 5.1, we used Thematic

Analysis for creating themes that described the kinds of information the

interviewees considered necessary in order to perform their tasks as OSS

designers. We phrased these themes as questions from the OSS designers to the

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

85

user reporting a problem, as follows:

• what were you trying to do?

• why did you want to do it?

• what did you do?

• what happened?

• what were your expectations?

• what are you running?

In the next paragraphs, we describe each of those themes, illustrating them

with snippets from the interviews with OSS designers.

what were you trying to do?
This theme reflects the need for information regarding the broader goal of the

user when he started the interaction with the system. All the interviewees

mentioned this as a critical piece of information to understand how their design

solution is failing users.

“Some of them [reports] are like “I don't like this version because it doesn't have
enough settings”. I want to ask them “What is it that you are actually trying to
achieve?”. I personally don't find “number of settings” to be a good UI metric.
Tell me, what is it that you need to do?” (P1)

“Users, when they file usability bugs, tend to talk about what they want the UI
to be, rather than what they are actually trying to do. (...) Frequently, we try to
get in touch with the original reporter to get more information about what is
that they were trying to do, because that has to be the drive of the solution.
You don't want to solve the problem that is not the problem you have.” (P2)

“One important part of it is figuring out what the person was trying to do,

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

86

what was their goal. (...) I mean, someone says “Such and such sucks!” and then
you need to engage and ask “OK, tell me what were you trying to do”, etc, etc.
By the end of that, you may have identified a string of issues that needs to be
fixed.” (P4)

All the interviewees stated “what were you trying to do?” as the most

frequently absent information in reports. As mentioned before, more often that

not, reporters focus on providing solutions to the problems they experienced,

omitting the rationale behind their “design decision”. P2 and P4 explain that

those design suggestions are often not helpful, since reporters are frequently not

informed of technology restrictions and of the broader design vision.

“It's great that everyone wants to be a designer, but they don't necessarily
understand the technology underneath and how it works.” (P2)

“Some things are just hard to solve by the nature of the design. And also by the
nature of the engineering itself, I guess. Usually, reporters are clueless about
those things.” (P4)

why did you want to do it?
This theme is related to information on the user's personal reasons to be trying

to achieve a certain goal, revealing data on the context that triggered a certain

interaction with the system. Information under this theme addresses users'

motivations and constraints, and is often not related to tangible aspects of the

system's user interface.

“There's a number of reasons why someone cannot achieve a certain goal, and
it's hard to understand it without the context, the motivations for the user to
be doing a certain thing.” (P1)

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

87

“The most helpful ones are the ones that actually say, like, “I wanted to do this
because of blah”. (...) I mean, it's good to know why someone would need to do
something, because you can better support them.” (P2)

“We get a lot of reports that are like “I want it to do this”, with no rationale of
why would you want to do that.” (P3)

“We got a bug report saying “There's no way to view contacts smaller, and that's
something that should be included” and that was not particularly helpful,
because I did not knew why that person wanted to have their contacts smaller.
And then I asked and he said “Well, it's because I have a lot of contacts, many of
them do not have avatars and my monitor is small. So I need them to be smaller
to see who's online”. That context information was really valuable to me”. (P4)

Some of the interviewees mentioned that this kind of information enables

them to come up with design solutions that not only solve users' problems, but

also provide a pleasurable experience to them.

what did you do?
Data under “what did you do” often takes the form of a step-by-step

description of what the user did during the actual interaction with the system.

Most OSS designers interviewed mentioned they would like reporters to “tell a

story” about their interactions with the systems. Some of the interviewees

added it would be helpful if this story included not only the actual operations

performed by the reporter, but also the reasons why the reporter thought those

were the correct actions to be done.

“[talking about a helpful report] And another thing is that he gave me data
about what he did.” (P1)

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

88

“It's great when reports are very narrative, if that makes sense. “Hey, I was
trying to use the installer, and I wanted to set the time locally and bla bla, so I
did this and I couldn't figure out...”. You know, it is very much like a story.” (P2)

“The full story is very useful. Like, this is what I wanted to do, this is where I
started, this is what I did, this is where it all went wrong, this is how I tried to
work around it... I need to understand the problem, the steps the person made
and all.” (P3)

It was also mentioned that this step-by-step description of the reporter's

interaction with the software should also include the reporter's attempts to

work around the experienced issue. P1 and P2 mentioned that this kind of

information is helpful for understanding the reporter's “mental model”, which

they mentioned as a way to get to know their user base.

“(...) [talking about a helpful report] he describes the different paths he took to
try to solve the problem (...) He explained every single action he took along the
way, and this tells me what is his mental model, if that makes sense. Like, where
he goes in order to work around certain issues. (...) It's interesting to understand
what he's thinking along the way.” (P1)

“When users tell you what they tried to do in order to solve an issue, you have a
broader idea of where you're succeeding and where you're failing. It's often very
good if you can understand where the user is coming from in the design , if
you get to know where he has been to.” (P2)

The interviewees' opinions conflicted, however, when it came down to

how the whole “story” should be partitioned when taking the form of reports.

Half of the interviewees thought a single report about the whole experience

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

89

might give them a better chance to fix the design at a broader level.

“Problems like “this label is broken” are easier to fix, and those are the things we
usually have in Bugzilla, but perhaps I'm missing the chance to fix the whole
workflow, because the user just reported part of his experience. Then I'll fix this
stuff and all, but perhaps I'm just making the experience less unpleasant, but it is
still broken.” (P1)

The other half, however, stated to prefer reports to be focused on smaller

problems, claiming them to be easier to manage, especially in terms of

interaction with developers. Designers in accordance with this point-of-view,

however, seemed to be influenced by limitations and characteristics of their

current bug tracker tools of use.

“One thing about bug trackers is that having lots of separate issues in a single
report makes it hard to discuss and hard to manage as well. The threads tend to
go to a bunch of different directions and ending up in no conclusion.” (P2)

“What I try to encourage is to people to report issues as they experience them. If
someone is experiencing something that's related to a bunch of different issues, I
encourage this person to file a set of bugs. But that may be a limitation of our
current bug tracking philosophy and tools, I guess.” (P4)

P1 mentions that a combination of both reporting styles might also be

beneficial, as it enables designers to have a broader view of the experience while

creating smaller action items for developers:

“[taking about a helpful report] It's interesting that his experience had to do with
several components that work together. So, it affects the shell, the search, the
online accounts setup, the chat itself. The chat client itself is not completely

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

90

broke, it's the broader experience that is, and we have a lot of attack points. So
[name of the reporter] tells me this entire story [on Google+], which is highly
valuable to me, but also opens a set of bug reports at Bugzilla for each of the
smaller problems, which is very helpful for us to coordinate work with
developers.” (P1)

what happened?
This theme is related to the actual issue perceived by the user. The

interviewees mentioned that the biggest issue with this kind of information is

that reporters tend to be quite inaccurate or unclear when describing interaction

breakdowns. It was observed that reporters often describe their experienced

issues as “X was broken”, without any specification of what it means to say that

X is broke and what are the observed symptoms for it.

The interviewees mentioned that the most helpful reports are the ones

that expose the experienced problem in detail, describing how it was observed

in the interface. They explained that the main challenge they face when trying

to gather this kind of information is to understand what the reporters are

describing.

“Often you may have fairly lengthy interactions with people just trying to
understand what they are talking about.” (P1)

“Usually, it's pretty hard to understand what people are describing. It's
different from when you're talking to other designers and developers, as we have
this kind of common language, and we describe things mostly with the same
terms.” (P2)

“Sometimes they [reporters] might describe a problem, and I try to reproduce it
in my machine, but it's not very clear what they were experiencing.” (P4)

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

91

As a workaround to this problem, some of the interviewees mentioned

that screen shots of what the reporter is seeing in the moment of the problem

are quite helpful.

“Some visual description of what happened is a lot more efficient. To show it to
you instead of describing it in words.” (P1)

“[talking about a helpful report] The thing that was the best about his report is
that he gave me screen shots of what exactly he was talking about.” (P2)

“A fairly good thing to know is what's actually happening, so, what someone
actually seeing in their screen. (...) Recently, I was checking one of those social
media sites and someone said “Oh, I don't like this design, it makes me scroll too
much”. Well, as far as I was aware, that design was meant to reduce scrolling in
that area, not increase it. The question then was “What are they actually seeing?
Why are they scrolling so much?”” (P4)

In the case where the reporter is describing an unpleasant experience with

continuous use of the software, interviewees mentioned they quite often are

faced with unspecific reports that mostly announce that something is hard or

difficult or frustrating, without any further explanation for what motivated

such statement. P3 observed that, in those cases, it is helpful for them to

understand what patterns in the software trigger the reporter's negative

emotions.

“It's very unhelpful when people do not state what the problems are, what are
the sources of their frustrations. Some say they are having a bad experience with
the software, like, “This doesn't work for me”. Why not? It's important for me
to understand this person's workflow and what are my patterns in failing

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

92

this workflow. Recurring things, you know?” (P3)

what were your expectations?
This theme describes information related to the reporter's expectations in terms

of the system behavior. The interviewees mentioned that it is often helpful

when the reporters describe what they expected to happen when the

experienced problem occurred, highlighting how the system frustrated these

expectations.

“What did you expect to happen? You know, what should have happened? The
expectation is usually very revealing. (...) This is where I think the best
information comes from, from the expectations” (P3)

“So, I lot of the feedback I get is “Oh, I think X should be like Y”, and we don't
know if that's because that reporter just thinks that's a better idea, or if it's
something related to their actual expectations, their uses and experience. So,
the difference between “I think X should be like Y” and “I tried to do X, and I
expected Y to happen, but then Z happened and I wasn't able to accomplish X”...
That definitely would be more useful.” (P4)

It was observed that this kind of information might also be found when
the reporter describes what triggered the interaction problem, so that the
designer have information about an interaction strategy his design failed to
accommodate or communicate. In a similar way, when the reporter describes
the ways in which he tried to work around an issue, the designer might also have
information on recovery or secondary interaction strategies.

Some of the interviewees mentioned that, by understanding a reporter's

expectations, most of the time, they also get to understand the reporter's

“mindset” and experience.

“I wouldn't say figuring out who the users are, the profile of the users matters so
much. It's more the different kinds of goals, habits and mindsets people have

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

93

when trying to do things. You usually get a sense of those things by knowing
the users' expectations.” (P4)

what are you running?
The interviewees stated that it is important for them to know with which

version of the software the reporter experienced a certain issue. This theme

started as a general descriptor for technical information, becoming exclusively

about software version, with the refinement of the set of themes. The

interviewed designers mentioned that often this is the only technical

information needed in order to grasp a described HCI problem. They explained

that this piece of information is relevant given the short release cycles used in

OSS development, and the fact that software may considerably change from one

version to the other.

“Incomplete [reports] also means people not telling which version of the
software they are using. Often we get reports saying “This version sucks”, and
then, when we figure out which version is this, we just tell the guy “Well, this is
fixed in the new version”. The version also helps me understand what the user
is talking about, you know? Frequently, things are added or removed from one
version to another. If the user talks about an element in a version, and I think
he's talking about another version, then we might end up not understanding
each other at all.” (P1)

“Generally, I would say knowing the software version is one of the most
important things, especially because we're always at this stage of continuous
evolution of the software, so there are quite a lot of changes and refinements to
the experience from version to version.” (P4)

The set of technical information needed from reporters might vary

depending on the domain of functionality of the software. P1 and P2

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

94

illustrate this situation:

“Because of the nature of our project, knowing the distributions is also quite
critical, since, you know, some distros also make some critical modifications to
our thing.” (P1)

“[talking about a helpful report] He told me about his machine , like “I'm doing
this in a VM, it has 2CPUs, it has this much RAM...”. In the case of the
[specific piece of software], this would have been the first thing I would have
asked him after I reading his post.” (P2)

6.3 Summary

In this chapter, we reported several findings related to the role of reports of HCI

issues in OSS designers' activities, noting that they are an important input for

them to iterate on their designs. We also reported many obstacles OSS designers

face when dealing with reports of HCI issues, among which we find a mismatch

between the information provided by reporters and the information OSS

designers need in order to act upon reported problems. In order to address this

mismatch, in Section 6.2, we elicited the kinds of information OSS designers

need to understand and solve HCI issues.

In chapter 7, based on the findings of this chapter, we present the design

and evaluation of a form for reporting HCI issues. This form was designed to

address the aforementioned mismatch, based on the information needs

identified.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

95

7 Improving Reports

In order to address RQ3, “how can we support end users in creating reports of

HCI issues that meet OSS designers' information needs?”, we propose a form

designed to support users in crafting reports of HCI issue that match the needs

of OSS designers identified in section 6.2. This chapter presents the design

rationale behind this form, and a study conducted to evaluate its ability to elicit

the necessary information from users, through the report of HCI issues.

7.1 Design

The form was designed according to a Semiotic Engineering approach, and

based on the work of Silveira and colleagues (2004), which presents a method

for building online help systems based on design models.

As explained in section 4.2, Semiotic Engineering views the user interface

as a message sent from designers to users, representing the designers' solution to

what they believe is the users' problems. According to this theory, it is essential

that users understand the designer's message so that they may better use and

take advantage of an application. Silveira and colleagues (2004) advocate that

users should be able to more precisely express their doubts about the designer's

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

96

message and needs. Their work aims to enable designers to “anticipate such

doubts and needs, and to organize their response accordingly” through the

design of help systems.

We are inspired by Silveira's idea that users should be able to express their

doubts and needs. However, our approach does not aim to anticipate the

designer's response to them. Instead, we aim to enable users to express such

doubts and needs, so that the designer can then review his message having them

in mind. By observing the findings from our interviews with OSS designers

(section 6.1) from a Semiotic Engineering perspective, it is possible to note that

this iterative review of the designers' message based on feedback from users

already takes place within OSS projects. Our goal is to support this process by

providing an HCI issue report format aligned with the information OSS

designers need, according to the findings in section 6.2, in order to review their

message. In comparison to Silveira and colleagues' work, we aim to enable users

to anticipate the designers' needs, instead of enabling designers to anticipate the

users' needs. We are motivated by the fact that a lot of the feedback OSS

designers receive is incomplete in terms of what they need to know to address

HCI issues, and that this makes the aforementioned iterative process inefficient,

as observed in section 6.1.

Our initial approach to this HCI issue report format was based only on

the types of information needed by OSS designers, as identified through our

interviews with OSS designers (section 6.2). We translated the six types of

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

97

information identified into a form consisting of six questions, followed by

examples of how to respond them (Table 10). The examples are a crucial part of

the form design, since they illustrate what is expected from each of the

questions, which the questions only might not be able to communicate. This

way, they are not an additional resource to the form filling, but an important

part of its composition.

Table 11: Mapping between types of information (section 6.2), and initial form questions.

type of information question
example

what were you trying to do? what were you trying to achieve?
I was trying to copy some videos to my pen drive.

why do you want to do it? why were you trying to achieve that?
So I could watch them on my friend's computer, since I cannot
plug my computer to the TV, as it doesn't have an HDMI plug.

what did you do? could you tell me, step by step, how were you trying
to do it?
I opened my Downloads folder, where the videos were, selected
them and then pressed Ctrl+C to copy. Then, I opened my pen
drive's directory and pressed Ctrl+V to paste the videos there.
I waited until the transfer was over and ejected my pen drive,
by pressing the eject icon close to its name in the side bar.

what happened? what went wrong?
I got a notification saying “Writing files to pen drive” or
something like this, but was never told when it finished.

what were your expectations? what did you expect to happen?
I expected a clear sign that I could remove my pen drive
without damaging my files, like a notification or something.

what are you running? what version of the software are you using?
GNOME 3.6 and the Nautilus file manager (3.6 too).

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

98

An inspection of this initial version of the form revealed its bias for

eliciting information about problems associated to the system response, seeming

unsuitable to problems associated to a user's attempt to express his

communicative intent. Because of this, our final approach draws on the user

utterances of the Communicability Evaluation Method (CEM, presented in

section 4.2.1) to propose an HCI issue report format, having in mind the

different kinds of breakdowns that a user might face when interacting with a

system. We also take into consideration the additional user utterances proposed

by Silveira in colleagues (2004) (Table 11) in order to address users' procedural

and motivational doubts, which are not addressed by the original set of

utterances of CEM. Table 12 presents the whole set of utterances considered for

designing our HCI issue report format.

Some of the existing CEM utterances were considered inadequate for the

purposes of a form for reporting HCI issues. For example, a user would never

utter Looks fine to me., since this utterance is associated with the user's inability

to recognize a problem with the expected results. Another unused CEM

utterance is Help!, since it does not describe an actual issue, just a scenario where

the user explicitly solicits information through the use of a help system.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

99

Table 12: Help-specific utterances proposed by Silveira and colleagues (2004).

user utterance illustrative symptoms

Where was I? The user needs to retrace his steps in order
to understand the state in which he
currently is.

Why should I do this? What is this for? The user doesn't understand the reasons
underlying certain instructions or the
utility of a certain task.

Who is affected by this? On whom does
this depend? Who can do this?

The user needs information about the
work processes and roles of the
application.

How do I do this? The user doesn't know how to perform a
certain task in an application.

Is there another way to do this? Comprises both the I can do otherwise and
the Thanks, but no, thanks utterances of
CEM.

Table 13: Final set of utterances considered for the design of our HCI issue report format.

CEM utterances

Where is it? What now? What's this?

Oops! I can't do it this way. Where am I?

What happened? Why doesn't it? I give up.

I can do otherwise. Thanks, but no, thanks.

Help utterances

Why should I do it? What is this for? Is there another way to do it?

On whom does this affects? On whom does this depend? Who can do this?

How can I do this? Where was I?

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

100

Our strategy for designing our HCI issue report format consisted of

adjusting the six questions, together with the example scenario, to each of the

utterances we selected. During this stage of the design of the format, we

observed that, indeed, it was not possible to describe the problems characterized

by all utterances using the same set of questions. However, we also observed

that different groups of utterances worked well with different sets of questions.

This led us to group the utterances by the affordance level (operational, tactical

or strategic) in which they occur, following the analysis of Silveira and

colleagues (2004), presented in Table 13. We argue that problems at different

affordance levels require different tools to be described, since in Semiotic

Engineering a designer has accomplished a successful communication with the

users when they can perceive the intended application affordances (Silveira et al.,

2004).

The final version of the form uses three sets of questions, whose main

difference to each other revolved around the question associated to the “what

happened?” and “what were your expectations?” information types. This piece

of information is critical to the form because it represents the reporter's

opportunity to more precisely express misconceptions on the designer's

message. The decision on which set of questions to use depends on which of

four labels the reporter chooses to characterize his problem. The labels are: I

don't like the way something works, I can't figure out how to do something, and

Something is confusing or unclear (plus the label Other).

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

101

Table 14: User utterances per affordance level, according to Silveira and colleagues
(2004).

affordance level user utterances

operational Where is it?
Oops!
Where am I?
Whom does it affect? On whom does this
depend? Who can do this?
Where was I?

operational, tactical What's this?
What happened?
What now?

tactical How do I do this?
I give up.

tactical, strategic Why doesn't it?
I can't do it this way.

strategic Why should I do this? What is it for?
Is there any other way to do this?
I can do otherwise.
Thanks, but no, thanks.

The labels were chosen as a way to represent the utterance groups, after

their aggregation by affordance level. The final grouping of the utterance is very

similar to Silveira and colleagues' (2004) analysis presented in Table 13. The user

utterances groups and their differences to Silveira and colleagues' work is

presented as follows:

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

102

I don't like the way something works.

Why should I do this? (strategic) What is it for? (strategic)

Is there another way to do this? (strategic) I can do otherwise. (strategic)

Thanks, but no, thanks. (strategic) I can't do it this way. (strategic, tactical)

Oops! (operational)

This utterance group is related to problems associated to strategic-level

affordances, which means they are related to “conceptualizations and decisions

involved in certain problem-solving processes and in the embedded technology”

(Silveira et al., 2004). These utterances are particularly important from the

perspective of Semiotic Engineering because they explicitly express the

reporter's disagreement to what the designer's message states. For example, a

report related to the I can do otherwise. or Thanks, but no, thanks. utterances may

express that a certain interaction path feels sub-optimal. The Oops! utterance,

even though it is not classified as a strategic-level utterance, was added to this

group because it represents an instant mistake, that the user rapidly recognizes

and try to repair. The reporter might then manifest that he doesn't appreciate

how the system's interface led him to do that mistake.

The form for reporting problems under I don't like the way something

works is described as follows:

1. What were you trying to achieve?

2. Why were you trying to achieve that?

3. Could you tell me, step by step, how were you trying to do it?

4. What was the problem?

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

103

5. How did you expect to do it?

6. What version of the software are you using?

I can't figure out how to do something.

Why doesn't it? (strategic, tactical) How do I do this? (tactical)

I give up. (tactical) What now? (tactical)

Where is it? (operational)

This utterance group is related to problems associated to tactical-level

affordances, which means they are related to “a plan, or sequence of actions, for

executing a certain task.” (Silveira et al., 2004). This group consists of utterances

describing situations where the reporter was not able to express his

communicative intent in terms of an interaction plan. The Where is it?

utterance, even though it is not classified as a tactical-level utterance, was added

to this group because it describes a situation where the reporter was unable to

find an interface element suitable to the expression of his communicative intent.

The form for reporting problems under I can't figure out how to do

something is described as follows:

1. What were you trying to achieve?

2. Why were you trying to achieve that?

3. What went wrong?

4. Could you tell me, step by step, how were you trying to do it?

5. What version of the software are you using?

For this utterance group, the question related to the information type

“what were your expectations” was omitted. We understand that, when the user

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

104

was not able to do something through the system, their expectations are

expressed through what they attempted to do in order to achieve their goal (the

“what did you do?” information type, expressed by the question “Could you tell

me, step by step, how you were trying to do it?).

Something is confusing or unclear.

What's this? (tactical, operational) What happened? (tactical, operational)

Where am I? (operational) Where was I? (operational)

Whom does it affect? (operational) On whom does this depend? (operational)

Who can do this? (operational) Where is it? (operational)

This utterance group is related to problems associated to operational-level

affordances, which means they are related to “the immediate and individual

actions that users need to perform” (Silveira et al., 2004). This group consists of

utterances describing situations where the reporter was not able to understand

what the system's interface is communicating.

The form for reporting problems under Something is confusing or unclear

is described as follows:

1. What were you trying to achieve?

2. Why were you trying to achieve that?

3. Could you tell me, step by step, how were you trying to do it?

4. What went wrong?

5. What did you expect to happen?

6. What version of the software are you using?

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

105

For this utterance group, the question related to the information type

“what were your expectations” is phrased differently from the question related

to the same type for the I don't like the way something works group. For

Something is confusing or unclear, the question is related to a description of what

the reporter expected the system's expression to be. For I don't like the way

something works group, the reporter is then expected to describe how he

expected or would prefer to accomplish or do something.

The complete form, with its example scenarios, can be found in the

Appendix C of this dissertation.

7.2 Evaluation

This section describes the study conducted in order to evaluate our form's

effectiveness in eliciting the information OSS designers need in reports of HCI

issues – according to the types information described in section 6.2.

7.2.1 Procedure

During a period of 16 days, participants in the study were invited to

report any HCI issues they experienced with software using our form,

implemented in the Polldaddy20 survey platform. We did not request

participants to use any specific software for the study; they were welcome to

report HCI issues experienced with any software they used, including their

operational system or desktop environment of choice, or any desktop, web or

mobile application. We also made no restrictions in relation to the use of

20 http://polldaddy.com/

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

106

software registered under open source licenses, since our interest is at the needs

of OSS designers, but not at the use of OSS.

Our initial plan was to compare the results of this evaluation to what we

observed with our analysis of bug reports from the GNOME bug tracker

(Section 6.1). For that purpose, we tried to recruit for this study participants

who had filed at least one of the bug reports in our sample, but, unfortunately,

only four of the invited reporters accepted to participate. Because of that, we

also recruited participants by sending invitations to open source and general

purpose mail and Facebook groups. We understand that, with this decision, the

samples for this study and for the analysis of bug reports are not comparable.

However, while we do not draw any conclusions based on comparing both

studies, we still took the opportunity to observe how the form influenced the

reporting practices of the four participants who also reported bugs in the

GNOME bug tracker. We will refer to them as P1 to P4.

During the 16 days of the study, 26 participants from a variety of

backgrounds (Table 14) volunteered a total of 45 reports of what they

considered to be HCI issues. These reports were qualitatively analyzed,

comparing their contents to what we identified as the information needs of OSS

designers. We also tagged the reports using two different sets of tags, one based

on Nielsen's heuristics and one based on the utterances used to design the form,

similarly to how we tagged our sample of bug reports from the GNOME

projects' bug tracker (Section 5.2).

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

107

Table 15: Profile of the participants in the study ordered by number of reports .

reports occupation Educational background

8 Researcher Biology (Doctoral Degree)

4 HCI Designer Arts and Graphic Design (Bachelor's degree)

3 Linux Technical Engineer Computer Science (Master's degree)

3 Researcher Physics (Doctoral degree)

2 Administrative Assistant High School

2 HCI Designer Computer Science (Master's degree)

2 Managing Director High School

2 Student Law (Bachelor's degree)

2 Student Political Science (Master's degree)

1 Economist Economics (Bachelor's degree)

1 Geophysicist Physics (Bachelor's degree)

1 HCI Designer Computer Science (Doctoral degree)

1 Legal Technician Human Resources (Master's degree)

1 Producer Journalism (Bachelor's degree)

1 Professor Business Administration (Doctoral degree)

1 Professor Business Administration (Master's degree)

1 Student Chemical Engineering (Bachelor's degree)

1 Student Chemical Engineering (Bachelor's degree)

1 Student Civil Engineering (Bachelor's degree)

1 Student Computer Science (Bachelor's degree)

1 Student Computer Science (Bachelor's degree)

1 Student Law (Bachelor's degree)

1 Student Literature (Bachelor's degree)

1 Student Mechanical Engineering (Bachelor's degree)

1 Student Political Science (Bachelor's degree)

1 Student Political Science (Bachelor's degree)

1 Student Political Science (Bachelor's degree)

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

108

Apart from that, we administered the National Aeronautics and Space

Administration Task Load Index (NASA-TLX) (Hart and Staveland, 1988)

procedure to assess the workload of the task of filling our form. The NASA-

TLX uses six dimensions to assess the workload of a given task: Mental demand,

Physical demand, Temporal demand, Performance, Effort and Frustration (Table

15). Following the procedure, after the 16-day period during which the

participants used the form, we requested them to fill a second form consisting of

six bipolar scales, each corresponding to one of the NASA-TLX dimensions,

divided from 0 to 100 in increments of 5. This form also consisted of 15 paired

comparisons between the six dimensions. Paired comparisons require the

participant to choose which dimension was perceived as more relevant to the

workload of the task. The number of times a dimension is chosen as more

relevant is the weight of that dimension for the task for that participant. The

procedure uses these weights to combine the scale ratings into a global score

representing the overall workload for that task according to a participant.

In the form we used for administering the NASA-TLX procedure,

participants were also asked if they had any comments on the form used for

reporting HCI issues.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

109

Table 16: Workload dimensions in the NASA-TLX procedure (Hart and Staveland, 1988)

dimension endpoints description

Mental Demand Low – High How much mental and perceptual activity
was required (e.g. Thinking, deciding,
calculating, looking, search, etc.)? Was the
task easy or demanding, simple or complex,
exacting or forgiving?

Physical Demand Low – High How much physical activity was required
(e.g. pushing, pulling, turning, controlling,
activating, etc.)? Was the task easy or
demanding, slow or brisk, slack or strenuous,
restful or laborious?

Temporal Demand Low – High How much time pressure did you feel due to
the rate or pace at which the task or task
elements occurred? Was the pace slow and
leisurely or rapid and frantic?

Performance Good – Poor How successful do you think you were in
accomplishing the goals of the task set by the
experimenter? How satisfied were you with
your performance in accomplishing these
goals?

Effort Low – High How hard did you have to work (mentally
and physically) to accomplish your level of
performance?

Frustration Low – High How insecure, discouraged, irritated, stressed,
and annoyed versus secure, gratified, content,
relaxed, and complacent did you feel during
the task?

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

110

7.2.2 Results

In this section, we present the results of this evaluation from three different

perspectives: accordance to the information needs of OSS designers, nature of

the problems reported, and workload imposed on reporters.

Information needs of OSS designers6.2

Table 17: Amount of reports that do not address the information types needed, per
information type.

type of information # reports where
it was not
described

% reports where
it was not
described

different
reporters

What were you trying
to do?

2 4.4% 2

Why do you want to
do it?

7 15.5% 4

What did you do? 3 6.7% 2

What happened? 0 0 0

What were your
expectations?

1 2.2% 1

What are you
running?

7 15.5% 7

One of the purposes of this study was to assess to what extent, according to the

findings reported on section 6.2, the form was successful in eliciting the

information needed by OSS designers. Since the questions in the form were

designed to map to the types of information we established previously (Table

10), we analyzed each of the collected reports, observing if the answers to each

question provided the expected information or not. In the case the answer did

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

111

not address our expectations, we tried to find the needed piece of information in

the answers to the other questions. The results of this analysis are presented in

Table 16.

It is possible to observe that, using our proposed form, it was hard to elicit

information related to the why do want to do it? information type. In the seven

reports in which this information was not observed, the reporter rephrased or

just repeated his answer to the question associated to the what were you trying to

do? information type. In the comments section of the NASA-TLX form, three

participants observed that the question related to why do you want to do it? felt

“weird” or “silly” to answer. One of them said: “I see the need for the question,

but I don't think it makes sense for all kinds of problem”. Indeed, we observed

that, for certain issues, why do you want to do it? might not be relevant to the

problem being described. For example, one of the collected reports described a

situation where the reporter could not understand an error message that showed

up when he was trying to connect to the Internet. In this case, the reporter just

answered “I wanted to connect to the internet” to both what were you trying to

do? and why did you want to do it?. The reasons why this reporter wanted to

connect to the internet might not be as relevant to the issue being described as

the circumstances under which the issue occurred (for example, device being

used, connection type, etc.). In that sense, the phrasing of the why do you want

to do it? information type might not be adequate to elicit certain kinds of

context information. Additionally, we believe that, in a redesign of the form,

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

112

the question related to why do you want to do it? should be made optional. The

form would then have to be redesigned to communicate when this information

might be useful, so that the reporter can decide when to provide it or not.

Through our analysis, we also observed a number of problems with the

question related to the what are you running? information type. We noticed two

different scenarios for that. In the first one, the reporter omits version

information, just mentioning the name of the software used. In that case,

reporters often provided answers such as “The latest version” or “I don't know

the version”. Indeed, one of the participants commented that finding out

version information was the worst part of using the form. He said: “I have to

actually open the software and figure out the version (which might not be

always easy to do). It would be better to have some sort of automatic version

detection for this”. In the second scenario, the reporter attributes the failure to

another piece of software, not mentioning the one responsible for the issue.

This was especially observed in reports describing issues with Web applications,

in which the reporters provide version information related to the browser and

not to the Web application. We believe this scenario might be due to actual

misattribution of the issue, but also to the lack of version information in Web

applications. As a solution to the latter, the question related to what are you

running? might be rephrased to include other ways to identify a software's state

when the reported issue was experienced (such as date of use and not only

version, for example).

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

113

We also observed that only two out of the 45 reports presented symptoms

of negative or offensive attitude from reporters, one raising questions with

regards to the designer's skills and the other with generic dislike statements

towards the new version of a software, such as “[previous version] was much

better” or “it is just complicated and messy”. This result, however, might be

biased due to the fact that participants knew that the information they provided

would be evaluated (Adair, 1984).

Additionally, we believe that the form positively influenced the reporting

practices of the four participants who also participated in our analysis of bug

reports. All seven reports submitted by P1, P2 and P4 using our form were

complete in terms of the information needs of OSS designers. In contrast, their

reports in the GNOME bug tracker presented different symptoms of

misalignment to the information needs of OSS designers. Out of the 25 bug

reports from these participants that we analyzed, only four (all from P2, from

which we analyzed 18 bug reports) were considered complete. It is worth

observing that, from these 25 bug reports, three (one from P1, and two from

P2) were not considered for comparison, since they reported cosmetic fixes to

the interface, such as buttons alignment.

When it comes to P3, however, two of his three reports submitted

through our form were incomplete, specifically in terms of the what did you do?

information type. In the GNOME bug tracker, we analyzed eight bug reports

from P3, four of them also missing information related to what did you do?.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

114

Seven out of the eight bug reports presented some symptom of misalignment to

the information needs of OSS designers, one common symptom being the

absence of information related to what were you trying to do? and why did you

want to do it? (three reports). This was observed in ten out of the 25 bug reports

in our sample from P1, P2, P3 and P4.

Nature of reported problems
When accessing our form, reporters were prompted to choose one out of four

problem descriptors to characterize the HCI issue they wanted to report: I

don't like the way something works, I can't figure out how to do something ,

Something is confusing or unclear, and Other. As explained in section 7.1, these

descriptors were designed to speak for different sets of user utterances, the

questions in the form varying depending on the descriptor selected by the

reporter.

In order to evaluate the descriptors and the way the user utterances were

grouped, we tagged the collected reports using the set of user utterances

considered when designing our form (Appendix B). Having this in mind and

our grouping of the user utterances based on descriptors, we identified the

descriptor we expected the reporter to select, and compared it with the

descriptor they actually selected. In the 45 reports collected, 16 (35.6%)

presented divergence between the descriptor we expected and the descriptor

selected. Five out of 45 reports were tagged with two descriptors at the same

time, since they reported issues tagged with user utterances grouped under

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

115

distinct descriptors. In none of them, the descriptor selected by the reporter was

different from both the descriptors we used. These cases were not considered as

divergences.

Table 18: Distribution of bug reports per descriptor expected and used.

The distribution of reports per descriptor expected and used is presented in

Table 17. We hypothesize that the high number of occurrences of the I don't

like the way something works descriptor, in comparison to what we expected,

might be due to the question phrasing and to the fact that it always came first in

the list of descriptors offered to reporters. For example, it could be thought that

I don't like the way something works because Something is confusing or unclear, or

because I can't figure out how to do something. In that sense, the ordering of the

options and the lack of specificity of the I don't like the way something works

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

116

descriptor might have influenced our results.

Table 19: Occurrences of each user utterance per affordance level.

utterance affordance levels in
which utterance may
occur according to

Silveira and colleagues
(2004)

operational tactical strategic total

What happened? operational, tactical 8 13 21

How do I do this? tactical 6 6

Is there another way of
doing this?

strategic 6 6

Help! all 0 5 0 5

Where is it? operational, tactical 3 1 4

Thanks, but, no thanks. strategic 4 4

Why doesn't it? Tactical, strategic 3 0 3

Why should I do this? strategic 3 3

Oops! operational 3 2

Where am I? operational 1 1

What's this? Operational, tactical 0 1 1

On whom does this
depend?

operational 1 1

I give up. tactical 1 1

Who can do this? operational 1 1

I can't do it this way. Tactical, strategic 0 1 1

What is it for? strategic 1 1

16 30 15 61

Tagging the reports with our set of user utterances also revealed other

interesting aspects of our collected data. In our analysis, given the fact that

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

117

according to Silveira and colleagues (2004) some utterances might occur at more

than one affordance level, we tagged the reports using the user utterance

observed and the affordance level in which that user utterance occurred.

Table 18 presents the number of occurrences of each user utterances per

affordance level, and shows only the utterances that were observed in the

collected reports. Gray slots represent cases where a utterance conceptually

can't occur in a certain affordance level, while white slots represent cases where

the occurrence is possible but wasn't observed. It is possible to observe that the

majority of the problems reported through our form are related to utterances

occurring at tactical level, followed by utterances at operational level and, then,

at strategic level. Further research is needed to identify either the form

motivated the reporting of this kind of issues, or if it just allowed us to better

recognize problems related to higher affordance levels.

We also observed that the four participants that also filed bug reports to

the GNOME bug tracker proportionally reported more issues at higher

affordance levels than they did at the bug tracker. In the nine reports

volunteered by P1, P2, P3 and P4, we observed the occurrence of 3 utterances at

operational level, 7 at tactical level, and one at strategic level. In the 33 bug

reports in the GNOME bug tracker from these same participants, we observed

the occurrence of 10 utterances at operational level, 5 at tactical level and none

at strategic level. It's worth noting that some reports and bug reports had more

than one utterance tagged to them, and some had none.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

118

From Table 18, it is also possible to observe five occurrences of the Help!

user utterance, even though it was not included in the set of utterances we used

to design the form. In the reports tagged with this utterance, reporters

mentioned using web search engines to look for instructions on how to achieve

something, or resorting to instructions provided by help systems or other

documentation materials. The latter case occurred in two reports in which the

reporters described looking for instructions on how to install something.

In addition to what we exposed so far, we observed that nine of the 45

reports described situations where a piece of software crashed, froze or stopped

working somehow. From these nine reports, seven also mentioned problems

understanding the reason why the software failed, or how to avoid the failure to

happen again. Apart from that, three reports described performance issues,

situations where the system's response was not immediate and there was no

indication of whether the user's action was ineffective, the software froze, or the

system was working on a response.

We also observed five reports describing situations where the reporter had

issues figuring out how to do something they used to do with an older version

of a software, using a newer one. Another kind of report that we observed, with

six occurrences, was related to features that do not exist in a certain piece of

software. We noticed that, in the reports composed using our form, the

rationale and motivation behind the feature suggestion was clear.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

119

Workload assessment with NASA-TLX
In order to calculate the workload of filling our form, we followed NASA-

TLX's instructions to compute weighted workload scores for participants.

Figure 2 shows the overall workload for each of the participants in our study. In

a scale from 0 to 100, the average workload for the task of filling our form was

24.49, with standard deviation of 16.68.

0

20

40

60

80

100

Overall workload

participant

ra
tin

g

Figure 2: Overall workload for each of the participants in the study.

The NASA-TLX is a two part evaluation procedure consisting of both

weights and ratings. Weights correspond to how a participant evaluates the

contribution of each of the six dimensions (presented on section 7.2.1) to the

workload of a task. Ratings correspond to the magnitude of each of the

dimensions to a task. As defined in the procedure, the workload of a task for a

participant is the weighted average of this participant's ratings for the six

dimensions.

Table 19 displays the average, standard deviation (σ) and coefficient of

variation (CV) values for the ratings of each of the six dimensions considered by

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

120

the NASA-TLX. As previously mentioned, ratings are given in a scale from 0 to

100. It is possible to observe that the ratings, especially for Physical demand and

Frustration, present high values for CV, showing a big variation on how

different participants perceive the magnitude of each dimension in relation to

the task.

Table 20: Average rating per dimension, ordered by average rating.

dimension average rating σ CV

Effort 31.8 21.9 0.69

Mental demand 26.4 20.9 0.8

Performance 25.4 24.6 0.97

Frustration 24.6 28.8 1.17

Temporal demand 17.0 17.5 1.03

Physical demand 15.4 24.4 1.58

As previously mentioned, weights are defined through paired comparisons

between the dimensions. Paired comparisons require the participant to choose

which dimension contributed more to the workload of the given task. The

number of times a dimension is chosen as more relevant is, for that participant,

the weight of that dimension for the task. Weights do not have values greater

than five, since each dimension is compared against the other five dimensions.

Table 20 displays the average, standard deviation (σ) and coefficient of variation

(CV) values for the weights of each of the dimensions.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

121

2122

Table 23: Average weight per dimension, ordered by average weight.

dimension average weight σ CV

Performance 3.7 1.2 0.3

Effort 3.2 1.1 0.4

Temporal demand 2.8 1.6 0.6

Mental demand 2.3 1.4 0.6

Frustration 2.0 1.7 0.8

Physical demand 0.9 1.2 1.3

It is possible to observe that Performance and Effort, the two dimensions

related to how a participant feels about the outcome of the task being evaluated,

were perceived as the dimensions that contribute the most to the workload of

filling the form we designed. This shows that, for the participants, having

confidence in the quality of the composed reports plays an important role on

the task of filling the form. Indeed, in the comments section of the NASA-TLX

form, two participants mentioned not being confident that their reports were

“correct” or would be understood.

We believe that, in order to address this and reduce the workload imposed

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

122

by our form, mechanisms for assuring the reporters of the quality of their

answers are needed. This kind of mechanism could be inserted before or after

the submission of a report. We also believe that having reports publicly

available, as bug reports currently are, poses an opportunity for reporters to

learn more about how to report HCI issues.

Overall, we believe the results of the NASA-TLX procedure were positive,

and five participants mentioned that the form was objective and easy to

understand. Two of them also observed that the examples following the

questions were very helpful in terms of elucidating what was expected of them.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

123

8 Conclusion

In this chapter, we discuss the contributions of this work and opportunities for

further research.

8.1 Contributions

In this work, we discussed the importance of reports of HCI issues to designers

in OSS projects, and ways to support users in creating them in a way that they

are feasible to be acted upon.

In order to understand how feedback through reports of HCI issues fit

and influence their design activities in OSS projects, we interviewed four OSS

designers and analyzed a set of 547 bug reports filed in the GNOME project's

bug tracker under HCI-related keywords. The first contribution of this work

was to show the importance of reports of HCI issues for designers in OSS

projects, and the obstacles they face when dealing with them. We identified a

mismatch between the information OSS designers need in order to address

reported HCI issues, and the information that is usually provided by users in

reports.

With these interviews, we also elicited the information needed by OSS

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

124

designers in order for them to act upon reported HCI issues. The second

contribution of this work was then the identification of the types of

information OSS designers need in reports of HCI issues (see Section 6.2).

Based on the elicited types of information and on Semiotic Engineering

concepts, we have designed and implemented a form for reporting HCI issues

according to OSS designers' information needs, which is the third contribution

of this work. We conducted a study in which 26 participants were invited to

report experienced HCI issues using the form we designed. We wanted to

observe how the form influenced the contents of reports of HCI issues in terms

of the types of information needed by OSS designers.

We collected a total of 45 reports of HCI issues experienced with different

kinds of software. From this study, we observed that our form was successful in

eliciting the needed information for 36 of the reports collected. Additionally, we

observed a high occurrence of reports describing issues at higher affordance

levels. These results reinforce the designed form as a contribution of this work.

It was also noted, however, that the form could be improved in terms of

eliciting information related to software version and to context of use. Also,

from an analysis based on the NASA-TLX procedure, we observed that

reporters' confidence in the quality of the created reports plays an important

role in the task of filling our form, exposing an opportunity for improvement

from that perspective.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

125

8.2 Future Work

Based on the analysis of the data collected, we have formulated some questions

that can guide further work on reports of HCI issues in OSS projects.

The participants in our evaluation of the form came from a variety of

backgrounds and had different experiences with technology and software. When

analyzing the collected reports, we observed that reporters had different

reporting styles and presented different symptoms of misalignment between the

information provided and the information expected. Not only that, but we also

observed a high variation between how participants perceived the magnitude of

the NASA-TLX's dimensions for the task of filling our form. We raise the

following questions: How does a user's background and past experience

influence the way HCI issues are reported? How can we support different

profiles of users in the task of creating reports of HCI issues that align with

OSS designers’ needs?

The latter question is also related to another question we want to raise

with this work. We observed that performance, meaning how confident a

reporter feels about composed reports, plays an important role in the workload

of reporting HCI issues through our form. We believe it is important to provide

ways to evaluate and assure reporters of the quality (or lack of quality) of their

reports. To that respect, what mechanisms could be employed to achieve this

goal? Additionally, how can we take advantage of the collaborative model of

OSS projects to leverage learning and mentoring of best practices for reporting

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

126

HCI issues?

Another opportunity for further research comes from what we consider

one of the limitations of this work. We elicited our list of types of information

needed by OSS designers from interviews with contributors to the Fedora and

GNOME projects, both of which have solid HCI strategies in place. This might

have introduced some bias to our data. We wonder whether projects with other

levels of commitment to HCI activities might have different information needs

in terms of HCI issues. We take this opportunity to also question how other

aspects of OSS projects might influence these needs: Do the information needs

of OSS designers vary according to a project's conventions, culture and

etiquette, for example?

This work addressed one of the challenges OSS designers face when

dealing with reports of HCI issues: the mismatch between the information OSS

designers need and what is provided to them in reports. In Section 6.1, we

enumerated a number of other obstacles related to this matter. One of them is

related to the management of reports of HCI issues, observed as the most time-

consuming activity of OSS designers. Our work contributes with ways to

support reporters to contribute with better descriptions of the problems they

experience. We believe this might already reduce the time needed to process

reports of HCI issues, by providing better problem descriptions, so that

contributors (reporters, designers and developers) can focus on the discussion of

solutions. Other dimensions to this problem, however, are the amount of

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

127

reports submitted and how to coordinate work to address reported issues

between developers and designers. We ask: How can we support OSS designers

in filtering, prioritizing and discussing reports of HCI issues? How can OSS

designers better coordinate fixes to HCI issues together with developers? In

time, what are the differences between the information needs of OSS designers

and OSS developers?

Another obstacle faced by OSS designers is related to negative and/or

aggressive attitudes adopted by reporters when submitting reports of HCI

issues. We wonder how to address this issue from an HCI perspective,

leveraging more positive attitudes through the design of issue report

mechanisms.

Our form also presents several opportunities for improvement, such as:

better phrasing of questions associated to context of use information (the why

did you want to do it? information type), better ways to identify the version or

state of a software when an issue was experienced, and tools for capturing and

uploading visual information on issues, such as screen shots and videos.

Another possible improvement is the addition of tips and resources to explain

why and how the questions asked are relevant to describing HCI issues. Besides

that, we believe that our grouping of the user utterances might be improved,

given the 35.6% rate of divergence between the descriptor we expected to be

used and the descriptor that was actually selected by reporters.

Finally, our form was designed having in mind the specific needs and

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

128

characteristics of HCI design in OSS communities. Further research is needed

to investigate its suitability to other communities involved in HCI activities.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

129

9 References

Adair, J. G. (1984). The Hawthorne effect: A reconsideration of the
methodological artifact. Journal of applied psychology, 69(2), 334.

Andreasen, M. S., Nielsen, H., Schrøder, S., & Stage, J. (2006). Usability in open
source software development: opinions and practice. Information technology
and control, 25(3A), 303-312.

Andreasen, M. S., Nielsen, H. V., Schrøder, S. O., & Stage, J. (2007). What
happened to remote usability testing?: an empirical study of three methods. In
Proceedings of the SIGCHI conference on Human factors in computing
systems (pp. 1405-1414). ACM.

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who should fix this bug?. In
Proceedings of the 28th international conference on Software engineering (pp.
361-370). ACM.

Bach, P. M., & Adviser-Carroll, J. M. (2009). Supporting the user experience in
free/libre/open source software development. Pennsylvania State University.

Bach, P. M., DeLine, R., & Carroll, J. M. (2009). Designers wanted:
participation and the user experience in open source software development. In
Proceedings of the 27th international conference on Human factors in
computing systems (pp. 985-994). ACM.

Bach, P. M., & Twidale, M. (2010). Involving reflective users in design. In
Proceedings of the 28th international conference on Human factors in
computing systems (pp. 2037-2040). ACM.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

130

Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., & Zimmermann,
T. (2008). What makes a good bug report?. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software engineering
(pp. 308-318). ACM.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology.
Qualitative research in psychology, 3(2), 77-101.

Breu, S., Premraj, R., Sillito, J., & Zimmermann, T. (2010). Information needs
in bug reports: improving cooperation between developers and users. In
Proceedings of the 2010 ACM conference on Computer supported cooperative
work (pp. 301-310). ACM.

Canfora, G., & Cerulo, L. (2006). Supporting change request assignment in
open source development. In Symposium on Applied Computing: Proceedings
of the 2006 ACM symposium on Applied computing (Vol. 23, No. 27, pp. 1767-
1772).

Castillo, J. C., Hartson, H. R., & Hix, D. (1998). Remote usability evaluation:
can users report their own critical incidents?. In CHI 98 conference summary
on Human factors in computing systems (pp. 253-254). ACM.

Chilana, P. K., Ko, A. J., & Wobbrock, J. O. (2010). Understanding expressions
of unwanted behaviors in open bug reporting. In Visual Languages and Human-
Centric Computing (VL/HCC), 2010 IEEE Symposium on (pp. 203-206).
IEEE.

Chilana, P. K., Ko, A. J., Wobbrock, J. O., Grossman, T., & Fitzmaurice, G.
(2011). Post-deployment usability: a survey of current practices. In Proceedings
of the 2011 annual conference on Human factors in computing systems (pp.
2243-2246). ACM.

Cox, A. (1998). Cathedrals, bazaars and the town council. Available from:
http://slashdot.org/features/98/10/13/1423253.shtml. Accessed 02 December,
2012.

Crowston, K., & Scozzi, B. (2004). Coordination practices for bug fixing within

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

131

FLOSS development teams. In Proceedings of the First International Workshop
on Computer Supported Activity Coordination (CSAC 2004).

Crowston, K., Annabi, H., Howison, J., & Masango, C. (2004). Effective work
practices for software engineering: free/libre open source software
development. In Proceedings of the 2004 ACM workshop on Interdisciplinary
software engineering research (pp. 18-26). ACM.

Čubranić, D. (2004). Automatic bug triage using text categorization. In In
SEKE 2004: Proceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering.

de Souza, C. S., Prates, R. O., & Barbosa, S. D. (1999). A method for evaluating
software communicability. Monografias em Ciência da Computação.
Departamento de Informática. PUC-RioInf, 1200, 11-99.

Souza, C. S. D., Prates, R. O., & Carey, T. (2000). Missing and declining
affordances: are these appropriate concepts?. Journal of the Brazilian Computer
Society, 7(1), 26-34.

de Souza, C. S. (2005a). The semiotic engineering of human-computer
interaction. MIT press.

de Souza, C. S. (2005b). Semiotic engineering: bringing designers and users
together at interaction time. Interacting with Computers, 17(3), 317-341.

de Souza, C. S., & Leitão, C. F. (2009). Semiotic engineering methods for
scientific research in HCI. Synthesis Lectures on Human-Centered Informatics,
2(1), 1-122.

de Souza, C. S. (2012). Semiotics. In: Soegaard, Mads and Dam, Rikke Friis
(eds.), The Encyclopedia of Human-Computer Interaction, 2nd Ed.. Aarhus,
Denmark: The Interaction Design Foundation. Available online at
http://www.interaction-design.org/encyclopedia/semiotics_and_human-
computer_interaction.html. Accessed 17 February, 2013.

Ducheneaut, N. (2005). Socialization in an open source software community: A

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

132

socio-technical analysis. Computer Supported Cooperative Work (CSCW),
14(4), 323-368.

Duffy, M. (2010) Fedora: A Case Study of Design in a FLOSS Community.
Available online at http://duffy.fedorapeople.org/presentations/chi
%202010%20floss%20hci%20workshop/duffy-flossdesign6.pdf. Accessed 02
December, 2012.

Faaborg, A., & Schwartz, D. (2010). Using a Distributed Heuristic Evaluation
to Improve the Usability of Open Source Software. In CHI’10: Proceedings of
the 28th international conference on Human factors in computing systems.

Fischer, M., Pinzger, M., & Gall, H. (2003). Analyzing and relating bug report
data for feature tracking. In Proceedings of the 10th Working Conference on
Reverse Engineering (p. 90). IEEE Computer Society.

Frishberg, N., Dirks, A. M., Benson, C., Nickell, S., & Smith, S. (2002). Getting
to know you: open source development meets usability. In CHI'02 extended
abstracts on Human factors in computing systems (pp. 932-933). ACM.

Furnas, G. W., Landauer, T. K., Gomez, L. M., & Dumais, S. T. (1987). The
vocabulary problem in human-system communication. Communications of the
ACM, 30(11), 964-971.

Gacek, C., & Arief, B. (2004). The many meanings of open source. Software,
IEEE, 21(1), 34-40.

Gallivan, M. J. (2008). Striking a balance between trust and control in a virtual
organization: a content analysis of open source software case studies.
Information Systems Journal, 11(4), 277-304.

Ghosh, R. A. (2005). Understanding free software developers: Findings from the
FLOSS study. Perspectives on free and open source software, 23-46.

Hammontree, M., Weiler, P., & Nayak, N. (1994). Remote usability testing.
Interactions, 1(3), 21-25.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

133

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load
Index): Results of empirical and theoretical research. Human mental workload,
1(3), 139-183.

Hartson, H. R., Castillo, J. C., Kelso, J., & Neale, W. C. (1996). Remote
evaluation: the network as an extension of the usability laboratory. In
Proceedings of the SIGCHI conference on Human factors in computing
systems: common ground (pp. 228-235). ACM.

Hartson, H. R., & Castillo, J. C. (1998). Remote evaluation for post-
deployment usability improvement. In Proceedings of the working conference
on Advanced visual interfaces (pp. 22-29). ACM.

Hedberg, H., Iivari, N., Rajanen, M., & Harjumaa, L. (2007). Assuring quality
and usability in open soruce software development. In Emerging Trends in
FLOSS Research and Development, 2007. FLOSS'07. First International
Workshop on (pp. 2-2). IEEE.

Heller, F., Lichtschlag, L., Wittenhagen, M., Karrer, T., & Borchers, J. (2011).
Me hates this: exploring different levels of user feedback for (usability) bug
reporting. In Proceedings of the 2011 annual conference extended abstracts on
Human factors in computing systems (pp. 1357-1362). ACM.

Herbsleb, J. D., & Kuwana, E. (1993). Preserving knowledge in design projects:
What designers need to know. In Proceedings of the INTERACT'93 and
CHI'93 conference on Human factors in computing systems (pp. 7-14). ACM.

Herraiz, I., Robles, G., Amor, J. J., Romera, T., & González Barahona, J. M.
(2006). The processes of joining in global distributed software projects. In
Proceedings of the 2006 international workshop on Global software
development for the practitioner (pp. 27-33). ACM.

Hollnagel, E. (1993). Human reliability analysis: Context and control (pp. 147-
202). London: Academic Press.

Jeffries, R., Miller, J. R., Wharton, C., & Uyeda, K. (1991). User interface
evaluation in the real world: a comparison of four techniques. In Proceedings of

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

134

the SIGCHI conference on Human factors in computing systems: Reaching
through technology (pp. 119-124). ACM.

Jeffries, R., & Desurvire, H. (1992). Usability testing vs. heuristic evaluation:
was there a contest?. ACM SIGCHI Bulletin, 24(4), 39-41.

Jeffries, R. (1994). Usability problem reports: Helping evaluators communicate
effectively with developers. In Usability inspection methods (pp. 273-294). John
Wiley & Sons, Inc..

Jensen, C., & Scacchi, W. (2007). Role migration and advancement processes in
ossd projects: A comparative case study. In Software Engineering, 2007. ICSE
2007. 29th International Conference on (pp. 364-374). IEEE.

John, B. E., & Packer, H. (1995). Learning and using the cognitive walkthrough
method: a case study approach. In Proceedings of the SIGCHI conference on
Human factors in computing systems (pp. 429-436). ACM Press/Addison-
Wesley Publishing Co..

Just, S., Premraj, R., & Zimmermann, T. (2008). Towards the next generation of
bug tracking systems. In Visual Languages and Human-Centric Computing,
2008. VL/HCC 2008. IEEE Symposium on (pp. 82-85). IEEE.

King, N. (2012). Doing template analysis. Qualitative Organizational Research:
Core Methods and Current Challenges.

Ko, A. J., Myers, B. A., Coblenz, M. J., & Aung, H. H. (2006a). An exploratory
study of how developers seek, relate, and collect relevant information during
software maintenance tasks. Software Engineering, IEEE Transactions on,
32(12), 971-987.

Ko, A. J., Myers, B. A., & Chau, D. H. (2006b). A linguistic analysis of how
people describe software problems. In Visual Languages and Human-Centric
Computing, 2006. VL/HCC 2006. IEEE Symposium on (pp. 127-134). IEEE.

Ko, A. J., DeLine, R., & Venolia, G. (2007). Information needs in collocated
software development teams. In Proceedings of the 29th international

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

135

conference on Software Engineering (pp. 344-353). IEEE Computer Society.

Ko, A. J., & Chilana, P. K. (2010). How power users help and hinder open bug
reporting. In Proceedings of the 28th international conference on Human
factors in computing systems (pp. 1665-1674). ACM.

Lavery, D., Cockton, G., & Atkinson, M. P. (1997). Comparison of evaluation
methods using structured usability problem reports. Behaviour & Information
Technology, 16(4-5), 246-266.

Li, Q., Heckman, R., Allen, E., Crowston, K., Eseryel, U. Y., Howison, J., &
Wiggins, A. (2008). Asynchronous decision-making in distributed teams.

Mack, R., & Montaniz, F. (1994). Observing, predicting, and analyzing usability
problems. In Usability inspection methods (pp. 295-339). John Wiley & Sons,
Inc..

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open
source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(3), 309-346.

Molich, R., & Nielsen, J. (1990). Improving a human-computer dialogue.
Communications of the ACM, 33(3), 338-348.

Nichols, D. M., Thomson, K., & Yeates, S. A. (2001). Usability and open-source
software development. In Proceedings of the Symposium on Computer Human
Interaction (pp. 49-54). ACM.

Nichols, D. M. (2003). I'd like to complain about this software.... Workshop
And Trip Reports Social Issues. SIGCHI Bulletin, 12.

Nichols, D. M., & Twidale, M. B. (2003). The usability of open source software.
First Monday, 8(1-6).

Nichols, D. M., McKay, D., & Twidale, M. B. (2003). Participatory Usability:
supporting proactive users. In Proceedings of the 4th Annual Conference of the
ACM Special Interest Group on Computer-Human Interaction (pp. 63-68).

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

136

ACM.

Nichols, D. M., & Twidale, M. B. (2006). Usability processes in open source
projects. Software Process: Improvement and Practice, 11(2), 149-162.

Nielsen, J., & Molich, R. (1990, March). Heuristic evaluation of user interfaces.
In Proceedings of the SIGCHI conference on Human factors in computing
systems: Empowering people (pp. 249-256). ACM.

Nielsen, J. (1992). The usability engineering life cycle. Computer, 25(3), 12-22.

Nielsen, J., & Hackos, J. T. (1993). Usability engineering (Vol. 125184069). San
Diego: Academic press.

Nielsen, J. (1994a). Heuristic evaluation. Usability inspection methods, 24, 413.

Nielsen, J. (1994b). Enhancing the explanatory power of usability heuristics. In
Proceedings of the SIGCHI conference on Human factors in computing
systems: celebrating interdependence (pp. 152-158). ACM.

Nielsen, J. (1995a). How to conduct a heuristic evaluation. Available online at
http://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/.
Accessed 17 February, 2012.

Nielsen, J. (1995b). Characteristics of usability problems found by heuristic
evaluation. Available online at http://www.nngroup.com/articles/usability-
problems-found-by-heuristic-evaluation/. Accessed 17 February, 2012.

Norman, D. A., & Draper, S. W. (1986). User centered system design; new
perspectives on human-computer interaction. L. Erlbaum Associates Inc..

Raymond, E. (1998). The cathedral and the bazaar. Knowledge, Technology &
Policy, 12(3), 23-49.

Raymond, E. S. (1999). The revenge of the hackers. Open Sources–Voices from
the Open Source Revolution’, O ‘Reilly, Cambridge, MA, USA, 207-220.

Runeson, P., Alexandersson, M., & Nyholm, O. (2007). Detection of duplicate

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

137

defect reports using natural language processing. In Software Engineering, 2007.
ICSE 2007. 29th International Conference on (pp. 499-510). IEEE.

Salgado, L. C., Bim, S. A., & de Souza, C. S. (2006). Comparação entre os
métodos de avaliação de base cognitiva e semiótica. In Proceedings of VII
Brazilian symposium on Human factors in computing systems (pp. 158-167).
ACM.

Sandusky, R. J., Gasser, L., & Ripoche, G. (2004a). Bug report networks:
Varieties, strategies, and impacts in a F/OSS development community. In
Proceedings of the 1st International Workshop on Mining Software
Repositories (MSR 2004).

Sandusky, R. J., Gasser, L., & Ripoche, G. (2004b). How negotiation shapes
coordination in distributed software problem management.

Sandusky, R. J., & Gasser, L. (2005). Negotiation and the coordination of
information and activity in distributed software problem management. In
Proceedings of the 2005 international ACM SIGGROUP conference on
Supporting group work (pp. 187-196). ACM.

Scacchi, W. (2002). Understanding the requirements for developing open source
software systems. In Software, IEE Proceedings- (Vol. 149, No. 1, pp. 24-39).
IET.

Schön, D. A. (1983). The reflective practitioner: How Professionals Think in
Action (Vol. 1). Basic books.

Schwartz, D., & Gunn, A. (2009). Integrating user experience into free/libre
open source software: CHI 2009 special interest group. In Proceedings of the
27th international conference extended abstracts on Human factors in
computing systems (pp. 2739-2742). ACM.

Sillito, J., Murphy, G. C., & De Volder, K. (2006). Questions programmers ask
during software evolution tasks. In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering (pp. 23-34).
ACM.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

138

Silveira, M. S., Barbosa, S. D. J., & Souza, C. S. D. (2004). Designing online
help systems for reflective users. Journal of the Brazilian Computer Society,
9(3), 25-38.

Stallman, R. (1992). Why software should be free. Available online at
http://www.gnu.org/philosophy/shouldbefree.html. Accessed 01 December,
2012.

Twidale, M. B., & Nichols, D. M. (2005). Exploring usability discussions in
open source development. In System Sciences, 2005. HICSS'05. Proceedings of
the 38th Annual Hawaii International Conference on (pp. 198c-198c). IEEE.

Viorres, N., Xenofon, P., Stavrakis, M., Vlachogiannis, E., Koutsabasis, P., &
Darzentas, J. (2007). Major HCI challenges for open source software adoption
and development. Online Communities and Social Computing, 455-464.

Von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, joining, and
specialization in open source software innovation: a case study. Research Policy,
32(7), 1217-1241.

Weiss, C., Premraj, R., Zimmermann, T., & Zeller, A. (2007). How long will it
take to fix this bug?. In Mining Software Repositories, 2007. ICSE Workshops
MSR'07. Fourth International Workshop on (pp. 1-1). IEEE.

Wilson, C., & Coyne, K. P. (2001). The whiteboard: Tracking usability issues:
to bug or not to bug?. interactions, 8(3), 15-19.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

139

Appendix A Interview Script

1. What is your role as a contributor?

2. How would you describe your design activities? What about your

redesign activities?

3. Do you evaluate your designs? If so, how?

4. Do you seek feedback from users after the deployment of a design? If so,

how?

5. What kind of information are you looking for?

6. What makes a good report of an HCI issue? Can you give examples?

7. How do you obtain feedback?

8. What kind of information do you usually obtain?

9. Do you succeed in finding the information you were after? How often?

10. What are the major obstacles to getting the information you need?

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

140

11. How do you process obtained feedback?

12. What motivates you to work on a given reported issue?

13. How does the obtained feedback influence your design activities?

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

141

Appendix B Tagging Reports

We used the same procedure to tag both the bug reports obtained from the

Bugzilla instance of the GNOME project (Section 5.2), and the reports collected

during the evaluation of our form (Section 7.2).

We tagged both sets of reports using a set of tags based on the user

utterances of CEM (de Souza et al., 1999). In addition to that, for the purpose of

this study, the set of reports from the Bugzilla instance of the GNOME project

was also tagged using a set of tags based on the heuristics proposed by Nielsen

(1994b) for the Heuristic Evaluation.

The procedure basically consisted of going through each report twice. The

first reading focused on identifying the main interaction problem(s) being

described by the user. The goal of the second reading was to highlight snippets

of the report describing the symptoms associated with the different user

utterances or with violations of the guidelines described by the heuristics. Once

identified, those snippets were then tagged with the correspondent user

utterance or heuristic spotted.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

142

Some examples of this tagging procedure:

• Tagging a bug report with heuristics

When doing a search in the Overview, the items under RECENT ITEMS do not have a right-
click menu or other means to select an action to perform1. Some types of files may have more
than one appropriate action.

For example, if I was working on a file called "index.html" yesterday, and I wanted to quickly
pull that up to edit it, the Overview would find it okay but the default action (double-click) of
showing it in the web browser would be the only option2. Ideally I could right-click to select
which application to use (such as Gedit) as is the case in Nautilus.

I also tried drag/drop the icon from RECENT ITEMS3 to Gedit in the Overview and that
doesn't do anything either.

1. Flexibility and efficiency of use

2. Error prevention

3. Flexibility and efficiency of use

• Tagging a bug report with user utterances

It's easy to lose sense of where one is1 when toggling between multiple workspaces (like with
alt tab).

If you alt tab between windows on workspace 1 and workspace 5, the animations indicate that
the workspaces are adjacent. It's very confusing then when the user then moves 1 workspace
up or down and finds that the the windows she expected aren't there2!

1. Where am I?

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

143

2. What happened?

3.

Tagging a report submitted through our form using user utterances

What is happening?

I wanted to enable mobile broadband in Ubuntu 12.04.

Why were you trying to achieve that?

I wanted to access the internet, so I plugged in my mobile broadband/GSM device. But there

was no option of enabling mobile broadband in Network connections1.

Could you tell me, step by step, how were you trying to do it?

Initially on plugging the device, the mobile broadband was enabled and it showed so2 (with

the mobile broadband option checked). It then asked me for a password which I could not

remember that time and clicked on cancel button in the dialog prompt3. Following this the

broadband connection was lost4 and so was the "mobile broadband enabled" option. I tried to

register my connection again5, but that also did not assure that I open my mobile broadband

connection at will6. I tried plugging the device from start many a times too7.

What was the problem?

The process of enabling mobile broadband connection is quite complex (as found in some

internet sources). The option in the Network Connection drop-down is visible sometimes and

sometimes not. I tried some of them, and finally re-plugged my device and this time luckily it

showed the option and I could click on it.

How did you expect to do it?

I wish a consistent option for enabling mobile broadband, or an automatic enabling when a

device is plugged in, or at least some kind of indication if something is wrong8 in the settings

(since the device was blinking properly and showed all signs of proper plugging).

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

144

What version of the software are you using?

Ubuntu 12.04 LTS

1. Where is it?

2. Looks fine to me.

3. I can't do it this way.

4. What happened?

5. Why doesn't it?

6. What now?

7. Why doesn't it?

8. Looks fine to me.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

145

Appendix C HCI Issue Report Form

What's happening?
[select box]

1. I don't like the way something works.
2. I can't figure out how to do something.
3. Something is confusing or unclear.
4. Other

If reporter selected I don't like the way something works.:

What were you trying to achieve?
[text field]
I wanted to temporarily block my boss on my chat client, Empathy.

Why were you trying to achieve that?
[text area]
Because my boss is always bugging me about work on my spare time, but I don't want to
appear as invisible to my whole list.

Could you tell me, step by step, how were you trying to do it?
[text area]
I located my boss on my Contacts list and tried to right-click over his name. I inspected the
options, but couldn't find anything suitable. Then I tried checking Empathy's main menu,
where there was this “Contacts” sub-menu with a “Blocked Contacts” item. I selected it and
it opened a dialog with a list of blocked contacts. It had a minus (“-”) button, but no plus. I
closed the dialog and tried opening a chat window with my boss. There, I clicked on the
“Contact” menu and then, finally, selected “Block contact”.

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

146

What was the problem?
[text area]
The process for blocking my boss was very complicated, specially because I want to unblock
my boss whenever I get to the office and then block him again when I leave. Apart from
that, there was no indication of whether a contact is blocked or not.

How did you expect to do it?
[text area]
I wish I could block/unblock contacts easily, like by right-clicking the contact on my list.
Also, once I blocked a contact, I'd expect his avatar to be grayed out or overlayed by some
icon indicating “this is a blocked contact”.

What version of the software are you using?
[text field]
Empathy 3.6.

If reporter selected I can't figure out how to do something.:

What were you trying to achieve?
[text field]
I wanted to temporarily block my boss on my chat client, Empathy.

Why were you trying to achieve that?
[text area]
Because my boss is always bugging me about work on my spare time, but I don't want to
appear as invisible to my whole list.

What went wrong?
[text area]
I can't figure out how to block contacts on Empathy.

Could you tell me, step by step, how were you trying to do it?
[text area]
I located my boss on my Contacts list and tried to right-click over his name. I inspected the
options, but couldn't find anything suitable. I tried selecting the “Edit” option to see if there
was anything useful there, but I couldn't find anything.

What version of the software are you using?

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

147

[text field]
Empathy 3.6.

If reporter selected Something is confusing or unclear. or Other:

What were you trying to achieve?
[text field]
I was trying to copy some videos to my pen drive.

Why were you trying to achieve that?
[text area]
So I could watch them on my friend's computer, since I cannot plug my computer to the TV,
as it doesn't have an HDMI plug.

Could you tell me, step by step, how were you trying to do it?
[text area]
I opened my Downloads folder, where the videos were, selected them and then pressed
Ctrl+C to copy. Then, I opened my pen drive's directory and pressed Ctrl+V to paste the
videos there. I waited until the transfer was over and ejected my pen drive, by pressing the
eject icon close to its name in the side bar.

What went wrong?
[text area]
I got a notification saying “Writing files to pen drive” or something like this, but was never
told when it finished.

What did you expect to happen?
[text area]
I expected a clear sign that I could remove my pen drive without damaging my files, like a
notification or something.

What version of the software are you using?
[text field]
GNOME 3.6 and the Nautilus file manager (3.6 too).

DBD
PUC-Rio - Certificação Digital Nº 1121835/CA

	1 Introduction
	1.1 Document Structure

	2 Research Goals
	2.1 Background
	2.2 Research Questions

	3 Related Work
	3.1 OSS Projects and HCI activities
	3.2 User reporting
	3.3 Bug Reporting
	3.4 Formats for reporting HCI issues
	3.5 Information needs in software development
	3.6 Summary

	4 Concepts and Techniques
	4.1 Heuristic Evaluation
	4.2 Semiotic Engineering
	4.2.1 Communicability Evaluation Method

	4.3 Summary

	5 Methodology
	5.1 Interviews with OSS designers
	5.2 Analysis of Bug Reports

	6 Feedback Management and Information Needs
	6.1 RQ1: How do reports of HCI issues fit OSS designers' activities?
	A) Designers' activities
	A.1) Design activities
	A.2) Evaluation activities

	B) Getting feedback
	B.1) Purpose
	B.2) Sources
	B.3) Designers' attitude

	C) Using feedback
	C.1) Motivations
	C.2) Obstacles

	6.2 RQ2: What are the kinds of information OSS designers need in reports of HCI issues?
	what were you trying to do?
	why did you want to do it?
	what did you do?
	what happened?
	what were your expectations?
	what are you running?

	6.3 Summary

	7 Improving Reports
	7.1 Design
	7.2 Evaluation
	7.2.1 Procedure
	7.2.2 Results
	Information needs of OSS designers6.2
	Nature of reported problems
	Workload assessment with NASA-TLX

	8 Conclusion
	8.1 Contributions
	8.2 Future Work

	9 References

